Publications by authors named "Oluwagbenga Paul Idowu"

Multi-channel Electroencephalograph (EEG) signal is an important source of neural information for motor imagery (MI) limb movement intent decoding. The decoded MI movement intent often serve as potential control input for brain-computer interface (BCI) based rehabilitation robots. However, the presence of multiple dynamic artifacts in EEG signal leads to serious processing challenge that affects the BCI system in practical settings.

View Article and Find Full Text PDF

Background And Objective: Recognition of motor intention based on electroencephalogram (EEG) signals has attracted considerable research interest in the field of pattern recognition due to its notable application of non-muscular communication and control for those with severe motor disabilities. In analysis of EEG data, achieving a higher classification performance is dependent on the appropriate representation of EEG features which is mostly characterized by one unique frequency before applying a learning model. Neglecting other frequencies of EEG signals could deteriorate the recognition performance of the model because each frequency has its unique advantages.

View Article and Find Full Text PDF

Recently, there is an increasing recognition that sensory feedback is critical for proper motor control. With the help of BCI, people with motor disabilities can communicate with their environments or control things around them by using signals extracted directly from the brain. The widely used non-invasive EEG based BCI system require that the brain signals are first preprocessed, and then translated into significant features that could be converted into commands for external control.

View Article and Find Full Text PDF

Current prostheses are limited in their ability to provide direct sensory feedback to users with missing limb. Several efforts have been made to restore tactile sensation to amputees but the somatotopic tactile feedback often results in unnatural sensations, and it is yet unclear how and what information the somatosensory system receives during voluntary movement. The present study proposes an efficient model of stacked sparse autoencoder and back propagation neural network for detecting sensory events from a highly flexible electrocorticography (ECoG) electrode.

View Article and Find Full Text PDF

Background: In medical diagnostics, breast ultrasound is an inexpensive and flexible imaging modality. The segmentation of breast ultrasounds to identify tumour regions is a challenging and complex task. The major problems of effective tumour identification are speckle noise, artefacts and low contrast.

View Article and Find Full Text PDF