Publications by authors named "Oluwagbemiga A Ojo"

Hypoxia is a common feature in various pathophysiological contexts, including tumor microenvironment, and IFN-γ is instrumental for anti-tumor immunity. HIF1α has long been known as a primary regulator of cellular adaptive responses to hypoxia, but its role in IFN-γ induction in hypoxic T cells is unknown. Here, we show that the HIF1α-glycolysis axis controls IFN-γ induction in both human and mouse T cells, activated under hypoxia.

View Article and Find Full Text PDF

During chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 CX3CR1 effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited.

View Article and Find Full Text PDF

The role of HIF1α-glycolysis in regulating IFN-γ induction in hypoxic T cells is unknown. Given that hypoxia is a common feature in a wide array of pathophysiological contexts such as tumor and that IFN-γ is instrumental for protective immunity, it is of great significance to gain a clear idea on this. Combining pharmacological and genetic gain-of-function and loss-of-function approaches, we find that HIF1α-glycolysis controls IFN-γ induction in both human and mouse T cells activated under hypoxia.

View Article and Find Full Text PDF

Immune checkpoint blockers (ICBs) have brought great promise to patients with advanced melanoma, a tumor type that was claimed largely incurable not long ago. However, therapeutic resistance to ICBs has limited their utility in the clinic. Here, we provide a commentary on recent research endeavors concerning ICB resistance in melanoma patients.

View Article and Find Full Text PDF

Therapeutic resistance to immune checkpoint blockers (ICBs) in melanoma patients is a pressing issue, of which tumor loss of IFN-γ signaling genes is a major underlying mechanism. However, strategies of overcoming this resistance mechanism have been largely elusive. Moreover, given the indispensable role of tumor-infiltrating T cells (TILs) in ICBs, little is known about how tumor-intrinsic loss of IFN-γ signaling (IFNγR1) impacts TILs.

View Article and Find Full Text PDF