Publications by authors named "Oluwafemi Joel Adelegan"

A 2D ultrasonic array is the ultimate form of a focused ultrasonic system, which enables electronically focusing beams in a 3D space. A 2D array is also a versatile tool for various applications such as 3D imaging, high-intensity focused ultrasound, particle manipulation, and pattern generation. However, building a 2D system involves complicated technologies: fabricating a 2D transducer array, developing a pitch-matched ASIC, and interconnecting the transducer and the ASIC.

View Article and Find Full Text PDF

Air-coupled transducers with broad bandwidth are desired for many airborne applications, such as obstacle detection, haptic feedback, and flow metering. In this article, we present a design strategy and demonstrate a fabrication process for developing improved concentric annular- and novel spiral-shaped capacitive micromachined ultrasonic transducers (CMUTs) that can generate high output pressure and provide wide bandwidth in air. We explore the ability to implement complex geometries by photolithographic definition to improve the bandwidth of air-coupled CMUTs.

View Article and Find Full Text PDF

This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies.

View Article and Find Full Text PDF

This paper describes the design and fabrication of an electrostatic MEMS switch that can be co-fabricated on the same substrate with a capacitive micromachined ultrasonic transducer (CMUT) as a transmit/receive (T/R) switch. The structure of the switch is modified from a single CMUT cell. An interrupted transmission line is defined across the center of the cell with control electrodes on both sides to pull a movable plate down.

View Article and Find Full Text PDF

In this paper, we describe a capacitive micromachined ultrasonic transducer (CMUT) with improved transparency for photoacoustic imaging (PAI) with backside illumination. The CMUT was fabricated on a glass substrate with indium-tin oxide bottom electrodes. The plate was a 1.

View Article and Find Full Text PDF