Publications by authors named "Olusola C Idowu"

Article Synopsis
  • Cutaneous wound healing is a complex and tightly regulated process involving various cell types; disruptions can lead to issues like non-healing wounds or excessive scarring.
  • Cellular senescence, which is a state where cells stop dividing, can aid in acute wound healing by facilitating tissue restoration but may contribute to chronic wounds that don’t heal or cause fibrosis.
  • This review seeks to clarify the dual role of senescence in wound healing, exploring how it can either promote or hinder the process depending on whether the context is acute or chronic, and looks into strategies for improving healing outcomes.
View Article and Find Full Text PDF

Human skin is characterized by significant diversity in color and tone, which are determined by the quantity and distribution of melanin pigment in the epidermis. Melanin absorbs and reflects ultraviolet radiation (UVR), preventing the damage to genomic DNA in the epidermis and degradation of collagen in the dermis; therefore, darker skin types are thought to be well protected from the photodamage because of the high melanin content. However, increased content of melanin in combination with the extrinsic stress factors causing inflammation such as excess UVR, allergic reactions, or injury can also frequently lead to cosmetic problems resulting in discoloration and scarring.

View Article and Find Full Text PDF

Purpose: Personalized approaches in dermatology are designed to match the specific requirements based on the individual genetic makeup. One major factor accounting for the differences in skin phenotypes is single nucleotide polymorphism (SNP) within several genes with diverse roles that extend beyond skin tone and pigmentation. Therefore, the cellular sensitivities to the environmental stress and damage linked to extrinsic aging could also underlie the individual characteristics of the skin and dictate the unique skin care requirements.

View Article and Find Full Text PDF

Purpose: Human skin undergoes modifications affecting its structural properties and barrier functions involved in protection against age-related damage. Glycation is a non-enzymatic reaction between macromolecules and sugars causing alterations to the elastic fibers and premature aging of the skin. Glycation can be prevented by a range of bioactive molecules; however, at present only a few of them are validated for inclusion in cosmetic products.

View Article and Find Full Text PDF

Human skin demonstrates a striking variation in tone and color that is evident among multiple demographic populations. Such characteristics are determined predominantly by the expression of the genes controlling the quantity and quality of melanin, which can alter significantly due to the presence of small nucleotide polymorphism affecting various steps of the melanogenesis process and generally linked to the lighter skin phenotypes. Genetically determined, constitutive skin color is additionally complemented by the facultative melanogenesis and tanning responses; with high levels of melanin and melanogenic factors broadly recognized to have a protective effect against the UVR-induced molecular damage in darker skin.

View Article and Find Full Text PDF

Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing.

View Article and Find Full Text PDF

Human skin is a stratified endocrine organ with primary roles in protection against detrimental biochemical and biophysical factors in the environment. Environmental stress causes gradual accumulation of the macromolecular damage and clinical manifestations consistent with chronic inflammatory conditions and premature aging of the skin. Structural proteins of cell nucleus, the nuclear lamins and lamina-associated proteins, play an important role in the regulation of a number of signal transduction pathways associated with stress.

View Article and Find Full Text PDF

Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects.

View Article and Find Full Text PDF