Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions.
View Article and Find Full Text PDFIt is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance.
View Article and Find Full Text PDFEpidermal keratinocytes migrate through the epidermis up to the granular layer where, on terminal differentiation, they progressively lose organelles and convert into anucleate cells or corneocytes. Our report explores the role of autophagy in ensuring epidermal function providing the first comprehensive profile of autophagy marker expression in developing epidermis. We show that autophagy is constitutively active in the epidermal granular layer where by electron microscopy we identified double-membrane autophagosomes.
View Article and Find Full Text PDFMeasuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data.
View Article and Find Full Text PDFThrough a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood([1-2]). We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging.
View Article and Find Full Text PDFThe protein iASPP (encoded by PPP1R13L) is an evolutionarily conserved p53 inhibitor, the expression of which is often upregulated in human cancers. We have recently shown that iASPP is a crucial regulator of epidermal homeostasis. Here, we report that iASPP also acts as autophagy inhibitor in keratinocytes.
View Article and Find Full Text PDFThe epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined.
View Article and Find Full Text PDF