Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs).
View Article and Find Full Text PDFRecent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection.
View Article and Find Full Text PDFNASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes.
View Article and Find Full Text PDFIcy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations.
View Article and Find Full Text PDFAs focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008.
View Article and Find Full Text PDFThe Makgadikgadi Salt Pans are the remnants of a mega paleo-lake system in the central Kalahari, Botswana. Today, the Makgadikgadi Basin is an arid to semi-arid area receiving water of meteoric origin during the short, wet season. Large microbial mats, which support primary production, are formed due to desiccation during the dry season.
View Article and Find Full Text PDFWe report here the genome sequence of moderately halophilic ASL-17, isolated from hypersaline sediment from the Yellow Sea, Korea. The bacterium was Gram variable, oval or coccoid, and mesophilic. The genome of ASL-17 has 3.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
May 2023
The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report.
View Article and Find Full Text PDFWater present on early Mars is often assumed to have been habitable. In this study, experiments were performed to investigate the habitability of well-defined putative martian fluids and to identify the accompanying potential formation of biosignatures. Simulated martian environments were developed by combining martian fluid and regolith simulants based on the chemistry of the Rocknest sand shadow at Gale Crater.
View Article and Find Full Text PDFThe reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons.
View Article and Find Full Text PDFTwo rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station.
View Article and Find Full Text PDFNitrate-dependent Fe oxidation (NDFO) is a microbially mediated process observed in many anaerobic, low-nutrient (oligotrophic) neutral-alkaline environments on Earth, which describes oxidation of Fe to Fe in tandem with microbial nitrate reduction. Evidence suggests that similar environments existed on Mars during the Noachian epoch (4.1-3.
View Article and Find Full Text PDFMicrobiol Resour Announc
February 2021
Characterizing the microbiome of spacecraft assembly cleanrooms is important for planetary protection. We report two bacterial metagenome-assembled genomes (MAGs) reconstructed from metagenomes produced from cleanroom samples from the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during the handling of the Phoenix spacecraft. Characterization of these MAGs will enable identification of the strategies underpinning their survival.
View Article and Find Full Text PDFNASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone.
View Article and Find Full Text PDFThe transition of the martian climate from the wet Noachian era to the dry Hesperian (4.1-3.0 Gya) likely resulted in saline surface waters that were rich in sulfur species.
View Article and Find Full Text PDFFinding evidence of life elsewhere in the Solar System is dependent on understanding biotic processes that could occur within potentially habitable environments. Here, we describe a suite of high-pressure flow-through reactors that have been developed to investigate biotic and abiotic processes within simulated sub-surface martian and icy moon environments.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans.
View Article and Find Full Text PDFSeveral icy moons of the outer solar system have been receiving considerable attention and are currently seen as major targets for astrobiological research and the search for life beyond our planet. Despite the limited amount of data on the oceans of these moon, we expect them to be composed of brines with variable chemistry, some degree of hydrothermal input, and be under high pressure conditions. The combination of these different conditions significantly limits the number of extreme locations, which can be used as terrestrial analogues.
View Article and Find Full Text PDFThe detection of potential biosignatures with mineral matrices is part of a multifaceted approach in the search for life on other planetary bodies. The 2020 ExoMars Rosalind Franklin rover includes within its payload three IR spectrometers in the form of ISEM (Infrared Spectrometer for ExoMars), MicrOmega, and Ma-MISS (Mars Multispectral Imager for Subsurface Studies). The use of this technique in the detection and characterization of biosignatures is of great value.
View Article and Find Full Text PDFThe Dallol geothermal area in the northern part of the Danakil Depression (up to 124-155 meter below sea level) is deemed one of the most extreme environments on Earth. The area is notable for being part of the Afar Depression, an incipient seafloor-spreading center located at the triple junction, between Nubian, Somali and Arabian plates, and for hosting environments at the very edge of natural physical-chemical extremities. The northern part of the Danakil Depression is dominated by the Assale salt plain (an accumulation of marine evaporite deposits) and hosts the Dallol volcano.
View Article and Find Full Text PDFAutotrophic carbon fixation is a crucial process for sustaining life on Earth. To date, six pathways, the Calvin-Benson-Bassham cycle, the reductive tricarboxylic acid cycle, the 3-hydroxypropionate bi-cycle, the Wood-Ljungdahl pathway, the dicarboxylate/4-hydroxybutyrate cycle, and the 4-hydroxybutyrate cycle, have been described. Nano-organisms such as members of the Candidate Phyla Radiation (CPR) bacterial superphylum and the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohalorchaeota (DPANN) archaeal superphylum could deeply impact carbon cycling and carbon fixation in ways that are still to be determined.
View Article and Find Full Text PDFTo ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established.
View Article and Find Full Text PDF