Two-dimensional topological insulators are characterized by the bulk gap and one-dimensional helical states running along the edges. The theory predicts the topological protection of the helical transport from coherent backscattering. However, the unexpected deviations of the conductance from the quantized value and localization of the helical modes are generally observed in long samples.
View Article and Find Full Text PDFQuantum wells formed by layers of HgTe between Hg[Formula: see text]Cd[Formula: see text]Te barriers lead to two-dimensional (2D) topological insulators, as predicted by the BHZ model. Here, we theoretically and experimentally investigate the characteristics of triple HgTe quantum wells. We describe such heterostructure with a three dimensional [Formula: see text] Kane model, and use its eigenstates to derive an effective 2D Hamiltonian for the system.
View Article and Find Full Text PDFWe have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propagating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2016
Low field magnetoresistance is experimentally studied in a two-dimensional topological insulator (TI) in both diffusive and quasiballistic samples fabricated on top of a wide (14 nm) HgTe quantum well. In all cases a pronounced quasi-linear positive magnetoresistance is observed similar to that found previously in diffusive samples based on a narrow (8 nm) HgTe well. The experimental results are compared with the main existing theoretical models based on different types of disorder: sample edge roughness, nonmagnetic disorder in an otherwise coherent TI and metallic puddles due to locally trapped charges that act like local gate on the sample.
View Article and Find Full Text PDFOur experimental studies of electron transport in wide (14 nm) HgTe quantum wells confirm the persistence of a two-dimensional topological insulator state reported previously for narrower wells, where it was justified theoretically. Comparison of local and nonlocal resistance measurements indicate edge state transport in the samples of about 1 mm size at temperatures below 1 K. Temperature dependence of the resistances suggests an insulating gap of the order of a few meV.
View Article and Find Full Text PDFWe investigate the magnetotransport properties of strained 80 nm thick HgTe layers featuring a high mobility of μ ∼ 4 × 10(5) cm(2)/V · s. By means of a top gate, the Fermi energy is tuned from the valence band through the Dirac-type surface states into the conduction band. Magnetotransport measurements allow us to disentangle the different contributions of conduction band electrons, holes, and Dirac electrons to the conductivity.
View Article and Find Full Text PDFNonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor ν=0.
View Article and Find Full Text PDFWe study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximately = 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors.
View Article and Find Full Text PDFNuclear magnetic resonance is detected via the in-plane conductivity of a two-dimensional electron system at unity Landau level filling factor in the regime of the quantum Hall effect in narrow and wide quantum wells. The NMR is spatially selective to nuclei with a coupling to electrons in the current carrying edge states at the perimeter of the 2DES. Interpretation of the electron-nuclear double resonance signals is facilitated by numerical simulations.
View Article and Find Full Text PDF