Recently it has been discovered that visuospatial attention operates rhythmically, rather than being stably employed over time. A low-frequency 7-8 Hz rhythmic mechanism coordinates periodic windows to sample relevant locations and to shift towards other, less relevant locations in a visual scene. Rhythmic sampling theories would predict that when two locations are relevant 8 Hz sampling mechanisms split into two, effectively resulting in a 4 Hz sampling frequency at each location.
View Article and Find Full Text PDFMyelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them.
View Article and Find Full Text PDFRecent evidence suggests that visuospatial attentional performance is not stable over time but fluctuates in a rhythmic fashion. These attentional rhythms allow for sampling of different visuospatial locations in each cycle of this rhythm. However, it is still unclear in which paradigmatic circumstances rhythmic attention becomes evident.
View Article and Find Full Text PDF