Outpatient care following nonhospitalized traumatic brain injury (TBI) is variable, and often sparse. The National Academies of Sciences, Engineering, and Medicine's 2022 report on highlighted the need to improve the consistency and quality of TBI care in the community. In response, the present study aimed to identify existing evidence-based guidance and specific clinical actions over the days to months following nonhospitalized TBI that should be prioritized for implementation in primary care.
View Article and Find Full Text PDFBackground: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.
View Article and Find Full Text PDFBackground: Several studies have shown that people with whiplash-associated disorder (WAD) may experience diverse symptoms, and social, activity and participation limitations. However, the symptom profile of WAD is still unclear. Therefore, this systematic review aimed to identify the symptoms, impairments, activity limitations, and participation restrictions of people with WAD to construct a symptom profile.
View Article and Find Full Text PDFBackground: The inflammatory response in patients with traumatic brain injury (TBI) offers opportunities for stratification and intervention. Previous unselected approaches to immunomodulation in patients with TBI have not improved patient outcomes.
Methods: Serum and plasma samples from two prospective, multi-centre observational studies of patients with TBI were used to discover (Collaborative European NeuroTrauma Effectiveness Research [CENTER-TBI], Europe) and validate (Transforming Research and Clinical Knowledge in Traumatic Brain Injury [TRACK-TBI] Pilot, USA) individual variations in the immune response using a multiplex panel of 30 inflammatory mediators.
Acute traumatic brain injury (TBI) is associated with substantial abnormalities in lipid biology, including changes in the structural lipids that are present in the myelin in the brain. We investigated the relationship between traumatic microstructural changes in white matter from magnetic resonance imaging (MRI) and quantitative lipidomic changes from blood serum. The study cohort included 103 patients from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study.
View Article and Find Full Text PDFThis systematic review aimed to synthesize the current evidence regarding neck sensorimotor testing in individuals with neck pain, assess the differences between neck pain groups and healthy controls, and recognize factors that might affect test results. We performed the data search using PubMed, Embase, PsycINFO, CINAHL, and Scopus databases. We used a two-step screening process to identify studies.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a common reason for presenting to emergency departments (EDs). The assessment of these patients is frequently hampered by various confounders, and diagnostics is still often based on nonspecific clinical signs. Throughout Europe, there is wide variation in clinical practices, including the follow-up of those discharged from the ED.
View Article and Find Full Text PDFBackground: The morbidity and mortality of acute subdural hematoma (aSDH) remains high. Several factors have been reported to affect the outcome and survival of these patients. In this study, we explored factors potentially associated with the outcome and survival of surgically treated acute subdural hematoma (aSDH), including postcraniotomy hematomas (PCHs).
View Article and Find Full Text PDFBlood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI ( = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-tau), amyloid β40 (Aβ40) and amyloid β42 (Aβ42), within 24 h of admission.
View Article and Find Full Text PDFNeurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity.
View Article and Find Full Text PDFBackground: It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI.
Methods: Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included.
Background: Interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have gained interest as diagnostic biomarkers of traumatic brain injury (TBI), but factors affecting their blood levels in patients with moderate-to-severe TBI are largely unknown.
Objective: To investigate the trajectories of IL-10 and H-FABP between TBI patients with and without extracranial injuries (ECI); to investigate if there is a correlation between the levels of IL-10 and H-FABP with the levels of inflammation/infection markers C-reactive protein (CRP) and leukocytes; and to investigate if there is a correlation between the admission level of H-FABP with admission levels of cardiac injury markers, troponin (TnT), creatine kinase (CK), and creatine kinase MB isoenzyme mass (CK-MBm).
Materials And Methods: The admission levels of IL-10, H-FABP, CRP, and leukocytes were measured within 24 h post-TBI and on days 1, 2, 3, and 7 after TBI.
Cognitive-linguistic functions are an essential part of adequate communication competence. Cognitive-linguistic deficits are common after traumatic diffuse axonal injury (DAI). We aimed to examine the integrity of perisylvian white matter tracts known to be associated with linguistic functions in individuals with DAI and their eventual association with poor cognitive-linguistic outcomes.
View Article and Find Full Text PDFBackground: Despite existing guidelines for managing mild traumatic brain injury (mTBI), evidence-based treatments are still scarce and large-scale studies on the provision and impact of specific rehabilitation services are needed. This study aimed to describe the provision of rehabilitation to patients after complicated and uncomplicated mTBI and investigate factors associated with functional outcome, symptom burden, and TBI-specific health-related quality of life (HRQOL) up to six months after injury.
Methods: Patients (n = 1379) with mTBI from the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study who reported whether they received rehabilitation services during the first six months post-injury and who participated in outcome assessments were included.
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used.
View Article and Find Full Text PDFObjective: To investigate whether neuropsychological test performance or presence of some specific injury symptoms at 1-3 months following pediatric mild traumatic brain injury (mTBI) can help to identify the children at risk for developing post-traumatic psychiatric symptoms.
Methods: Data from 120 children and adolescents aged 7-15 years, treated at Turku University Hospital between 2010 and 2016 due to mTBI, and who had undergone neuropsychological evaluation at 1-3 months following injury, were enrolled from the hospital records. Neuropsychological test performancesand injury symptom reports were retrospectively retrieved from the patient files.
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI.
View Article and Find Full Text PDFDiffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury.
View Article and Find Full Text PDFComplex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome.
View Article and Find Full Text PDFActa Neurol Scand
October 2022
Blood-based biomarkers are promising tools to complement clinical variables and imaging findings in the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Several promising biomarker candidates have been found for various clinical questions, but the translation of TBI biomarkers into clinical applications has been negligible. Measured biomarker levels are influenced by patient-related variables such as age, blood-brain barrier integrity and renal and liver function.
View Article and Find Full Text PDFThere is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI.
View Article and Find Full Text PDFWe investigated the topology of structural brain connectivity networks and its association with outcome after mild traumatic brain injury, a major cause of permanent disability. Eighty-five patients with mild traumatic brain injury underwent magnetic resonance imaging (MRI) twice, about three weeks and eight months after injury, and 30 age-matched orthopedic trauma control subjects were scanned. Outcome was assessed with Extended Glasgow Outcome Scale on average eight months after injury.
View Article and Find Full Text PDF