The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.
View Article and Find Full Text PDFThe design of efficient bacterial inactivation treatment in wastewater is challenging due to its numerous parameters and the complex composition of wastewater. Although solar photochemical processes (PCPs) provide energy-saving benefits, a balance must be maintained between bacterial inactivation efficiency and experimental costs. Predictive decision tools for bacterial inactivation under various conditions would significantly contribute to optimizing PCP design resources.
View Article and Find Full Text PDFThis study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight.
View Article and Find Full Text PDFAgricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2023
The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N'-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP).
View Article and Find Full Text PDFThe safe reuse of reclaimed water for agricultural irrigation has been considered as an alternative, feasible and sustainable option to address water scarcity. This work aims to validate the capability of the solar water photochemical process based on the synergistic effect between peroxymonosulfate (PMS) and natural solar radiation for actual urban wastewater (UWW) purification at a pilot plant scale using a solar Compound Parabolic Collector photo-reactor. The PMS/Solar process performance was assessed by monitoring simultaneously the inactivation of naturally occurring bacteria (Escherichia coli, Total coliforms, Enterococcus spp.
View Article and Find Full Text PDFIn this work, we employed EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) as a low-cost tool to study the oxidation pathways of (fluoro)quinolones. Amounts of 12.5 μM of enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFL), oxolinic acid (OA), and flumequine (FLU), as individual solutions, were irradiated under UVA light.
View Article and Find Full Text PDFThis work is focused on improving the understanding of the complex water matrix interactions occurring during the removal of a microcontaminants mixture (acetamiprid, carbamazepine and caffeine) by solar/Fe-EDDS/persulfate process. The individual and combined effects of sulfates (100-500 mg/L), nitrates (20-160 mg/L), bicarbonates (77-770 mg/L) and chlorides (300-1500 mg/L) were assessed by comparing the outcomes obtained in different synthetic and actual water matrices. In general, the results showed negligible effects of the different anions on Fe-EDDS concentration and PS consumption profiles, while the combination of bicarbonates and chlorides seemed to be the key for the MC removal efficiency decrease found when working with complex matrixes.
View Article and Find Full Text PDFThis study investigates the capability of modified zinc oxides (ZnO) with Ce, Yb and Fe towards the simultaneous inactivation of pathogenic bacteria (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and Contaminants of Emerging Concern (CECs, Diclofenac, Sulfamethoxazole and Trimethoprim) under natural sunlight. Several catalyst loads (from 0 to 500 mg/L) were assessed as proof-of principle in isotonic solution followed by the evaluation of organic matter effect in simulated and actual urban wastewater (UWW), using bare TiO-P25 as reference. The order of photocatalysts efficiency for both bacterial and CECs removal was: ZnO-Ce ≅ TiO-P25 > ZnO-Yb > ZnO-Fe > photolysis > darkness in all water matrices.
View Article and Find Full Text PDFThe effect of different times of Fe:Ethylenediamine-N, N'-disuccinic acid (EDDS) dosing and HO as well as different Fe:EDDS concentrations in the sequential treatment sunlight/HO followed by sunlight/HOFe:EDDS at circumneutral pH was investigated for the first time focusing both in contaminants of emerging concern (CECs) and bacteria removal in urban wastewater treatment plant effluents. Process efficiency was evaluated in terms of (i) degradation of five CECs (namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 μgL each and (ii) bacteria inactivation (Escherichia coli (E. coli) and Salmonella spp).
View Article and Find Full Text PDFThe main objective of this study was to generate ready-to-use revalorized irrigation water for fertilization from urban wastewater treatment plant (UWWTP) effluents. The focus was on controlled retention of NH and microcontaminants (MC), using nanofiltration. Retentates generated were treated by solar photo-Fenton at circumneutral pH using Ethylenediamine-N, N'-disuccinic acid (EDDS) iron complexing agent.
View Article and Find Full Text PDFThis work deals with microcontaminants (MCs) removal by natural solar zero-valent iron (ZVI) process at natural pH in actual matrices. Commercial ZVI microspheres were selected as ZVI source and hydrogen peroxide and persulfate were used as oxidant agents. The experimental plan comprised the evaluation of sulphates and carbonates/bicarbonates effect on process performance, the possibility of adding an iron chelate (EDDS) to take advantage of leached iron and the treatment of MCs in actual MWWTP secondary effluent.
View Article and Find Full Text PDFThe development of treatment trains for pollutant degradation employing zerovalent iron has been attracting a lot of interest in the last few years. This approach consists of pre-treatment only with zerovalent iron, followed by a Fenton oxidation taking advantage of the iron ions released in the first step. In this work, the advantages/disadvantages of this strategy were studied employing commercial zerovalent iron microparticles (mZVI).
View Article and Find Full Text PDFContamination of natural water (NW) by emerging contaminants has been widely pointed out as one of the main challenges to ensure high-quality drinking water. Thus, the effectiveness of a solar-driven free chlorine advanced oxidation process simultaneously investigating the elimination of six organic microcontaminants (OMCs) and three bacteria from NW at a pilot-scale was evaluated in this study. Firstly, the solar/free chlorine process was studied at lab-scale using a solar simulator to evaluate the effect of free chlorine concentration (0.
View Article and Find Full Text PDFThis study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (, spp.
View Article and Find Full Text PDFIn this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (HO/solar, Fe-EDDHA/HO/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E.
View Article and Find Full Text PDFSolar zerovalent iron (ZVI) was studied at circumneutral pH in combination with hydrogen peroxide and persulfate for removal of imidacloprid as a model contaminant in natural water. Three commercial ZVI sources, steel wool (ZVI-SW) and two iron micro-powders (ZVI-MS and ZVI-S) were independently evaluated. First, different ZVI corrosion conditions were tested in contact with air, exposed to natural solar radiation and with addition of oxidants, such as HO and SO, demonstrating the importance of released iron.
View Article and Find Full Text PDFThe application of electrochemical processes for wastewater treatment has increase significantly in the last two decades. However, most of the works are focused on lab-scale systems testing in saline simulated solutions spiked with a reference organic compound, evidencing the scarcity of studies on actual wastewaters through a more realistic practical approach. The aim of the present work is assessing the performance of electrochemical treatments in actual matrices, considering the formation of different oxidants species, apart from hydroxyl radicals, from dissolved ions contained in target effluents as well as both, the regeneration of Fe and their combination with a light irradiation source.
View Article and Find Full Text PDFThis study investigates the effectiveness of non-activated peroxymonosulfate (PMS) as oxidative agent for water purification in the presence and absence of natural solar radiation. The inactivation of three pathogens (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and degradation of three Contaminants of Emerging Concern (CECs) (Trimethoprim-TMP, Sulfamethoxazole-SMX and Diclofenac-DCF) was simultaneously assessed in isotonic water (IW) by testing a wide range of PMS concentrations (from 0.0001 to 0.
View Article and Find Full Text PDFSolar processes (sunlight/HO solar photo-Fenton with EDDS at neutral pH) were compared to a consolidated technology (ozonation) in the inactivation of target bacteria (E. coli, Salmonella spp. and Enterococcus spp.
View Article and Find Full Text PDFAutopsy of carbon-PTFE cathodes was performed by addressing their degradation in a commercial plate-and-frame cell equipped with a Nb-BDD anode. Cell is arranged within an electrochemical pilot plant designed for treating wastewaters by electrochemical Fenton-like processes, thus an efficient electrocatalytic production of HO is necessary to guarantee Fenton's reaction. Significant decrease in HO electrogeneration occurred during pilot plant operation, hindering the efficient performance of Fenton-like processes.
View Article and Find Full Text PDFIn this work, fluorescence excitation-emission matrices (EEMs), in combination with the chemometric tool and parallel factor analysis (PARAFAC), have been proposed as an unexplored methodology to follow the removal of the fluorescent contaminants of emerging concern, fluoroquinolones (FQs). Ofloxacin, enrofloxacin, and sarafloxacin were degraded by different advanced oxidation processes employing simulated sunlight (ν): photolysis, HO/ν, and photo-Fenton. All experiments were performed in ultrapure water at three different pH values: 2.
View Article and Find Full Text PDFSimultaneous removal of contaminants of emerging concern and bacteria inactivation in simulated municipal wastewater effluent (SMWW) through solar advanced oxidation processes, namely sunlight/HO and solar photo-Fenton with Ethylenediamine-N,N'-disuccinic acid (EDDS) at neutral pH was investigated. Process efficiency was evaluated in terms of (i) degradation of five contaminants of emerging concern (CECs, namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 μgL each and (ii) bacteria inactivation (E. coli, S.
View Article and Find Full Text PDF