The mechanism of direct amination of allyl alcohol by a palladium triphenylphosphite complex has been explored. Labelling studies show that the reaction proceeds through a π-allylpalladium intermediate. A second-order dependence of reaction rate on allyl alcohol concentration was observed.
View Article and Find Full Text PDFNitrogen kinetic isotope effects for the oxidation of benzylamine and (1,1-(2)H(2))benzylamine by recombinant human monoamine oxidase B show that cleavage of the CH bond is not concerted with rehybridization of the nitrogen atom.
View Article and Find Full Text PDFNucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e.
View Article and Find Full Text PDFChlorine leaving group k(35)/k(37), nucleophile carbon k(11)/k(14), and secondary alpha-deuterium [(kH/kD)alpha] kinetic isotope effects (KIEs) have been measured for the SN2 reactions between para-substituted benzyl chlorides and tetrabutylammonium cyanide in tetrahydrofuran at 20 degrees C to determine whether these isotope effects can be used to determine the substituent effect on the structure of the transition state. The secondary alpha-deuterium KIEs indicate that the transition states for these reactions are unsymmetric. The theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion; i.
View Article and Find Full Text PDFJ Org Chem
June 2006
The secondary alpha- and beta-deuterium, the alpha-carbon, the nucleophile carbon, the nucleophile nitrogen, and the chlorine leaving group kinetic isotope effects for the S(N)2 reaction between cyanide ion and ethyl chloride were determined in the very slightly polar solvent THF at 30 degrees C. A comparison of these KIEs with those reported earlier for the same reaction in the polar solvent DMSO shows that the transition state in THF is only slightly tighter with very slightly shorter NC-C(alpha) and C(alpha)-Cl bonds. This minor change in transition state structure does not account for the different transition structures that were earlier suggested by interpreting the experimental KIEs and the gas-phase calculations, respectively.
View Article and Find Full Text PDFThe chlorine leaving group kinetic isotope effects (KIEs) for the S(N)2 reactions between methyl chloride and a wide range of anionic, neutral, and radical anion nucleophiles were calculated in the gas phase and, in several cases, using a continuum solvent model. In contrast to the expected linear dependence of the chlorine KIEs on the C(alpha)-Cl bond order in the transition state, the KIEs fell in a very small range (1.0056-1.
View Article and Find Full Text PDFThe secondary alpha-deuterium, the secondary beta-deuterium, the chlorine leaving-group, the nucleophile secondary nitrogen, the nucleophile (12)C/(13)C carbon, and the (11)C/(14)C alpha-carbon kinetic isotope effects (KIEs) and activation parameters have been measured for the S(N)2 reaction between tetrabutylammonium cyanide and ethyl chloride in DMSO at 30 degrees C. Then, thirty-nine readily available different theoretical methods, both including and excluding solvent, were used to calculate the structure of the transition state, the activation energy, and the kinetic isotope effects for the reaction. A comparison of the experimental and theoretical results by using semiempirical, ab initio, and density functional theory methods has shown that the density functional methods are most successful in calculating the experimental isotope effects.
View Article and Find Full Text PDFLeaving-group fluorine and secondary deuterium multiple kinetic isotope effects (KIEs) have been determined for the base-promoted HF elimination from the 4-fluoro-4-(4'-nitrophenyl)-(1,1,1,3,3-(2)H(5))butan-2-one. The fluorine KIE was determined by using the accelerator-produced short-lived radionuclide (18)F in combination with the naturally abundant (19)F. The (19)F substrate was labeled with (14)C in a remote position to enable radioactivity measurements of both substrates.
View Article and Find Full Text PDF