An algorithm is proposed for performing molecular dynamics (MD) simulations of a biomolecular solute represented at atomistic resolution surrounded by a surface layer of atomistic fine-grained (FG) solvent molecules within a bulk represented by coarse-grained (CG) solvent beads. The method, called flexible boundaries for multiresolution solvation (FBMS), is based on: (i) a three-region layering of the solvent around the solute, involving an FG layer surrounded by a mixed FG-CG buffer layer, itself surrounded by a bulk CG region; (ii) a definition of the layer boundary that relies on an effective distance to the solute surface and is thus adapted to the shape of the solute as well as adjusts to its conformational changes. The effective surface distance is defined by inverse-nth power averaging over the distances to all non-hydrogen solute atoms, and the layering is enforced by means of half-harmonic distance restraints, attractive for the FG molecules and repulsive for the CG beads.
View Article and Find Full Text PDFForce field parameters for polarizable coarse-grained (CG) supra-atomic models of liquid cyclohexane are proposed. Two different bead sizes were investigated, one representing two fine-grained (FG) CH(2)r united atoms of the cyclohexane ring, and one representing three FG CH(2)r united atoms. Electronic polarizability is represented by a massless charge-on-spring particle connected to each CG bead.
View Article and Find Full Text PDFElectronic polarizability is usually treated implicitly in molecular simulations, which may lead to imprecise or even erroneous molecular behavior in spatially electronically inhomogeneous regions of systems such as proteins, membranes, interfaces between compounds, or mixtures of solvents. The majority of available molecular force fields and molecular dynamics simulation software packages does not account explicitly for electronic polarization. Even the simplest charge-on-spring (COS) models have only been developed for few types of molecules.
View Article and Find Full Text PDFIncoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data.
View Article and Find Full Text PDF