Publications by authors named "Olivo M"

While adoptive cell therapies (ACT) have been successful as therapies for blood cancers, they have limited efficacy in treating solid tumours, where the tumour microenvironment excludes and suppresses adoptively transferred tumour-specific immune cells. A major obstacle to improving cell therapies for solid tumours is a lack of accessible and quantitative imaging modalities capable of tracking the migration and immune functional activity of ACT products for an extended duration . A high-efficiency magnetophoretic method was developed for facile magnetic labelling of hard-to-label immune cells, which were then injected into tumour-bearing mice and imaged over two weeks with a compact benchtop Magnetic Particle Imager (MPI) design.

View Article and Find Full Text PDF

Using bibliometric analysis of large-scale publication data is a simple approach to exploring gender-related trends, especially gender equality in academic publishing. The aim of this study is to investigate gender trends in the fields of bio-economy and rural development sciences in two under develop regions as Latin America and Africa. This study examines gender differences in these fields in order to: (1) recognize the contribution of female researchers in bioeconomy and rural development, (2) explore the relational structure of gender aspects in academic publications, (3) identify trends in female authorship in these scientific research fields over time, and finally (4) identify gender potentials for women to become more visible in these fields of study.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated nikkomycin Z's effectiveness in treating central nervous system coccidioidomycosis in mice, showing significant improvements in survival and reduction of brain fungal burden compared to control.
  • Mice were given nikkomycin Z at doses of 50, 100, and 300 mg/kg three times daily, or fluconazole, starting two days post-inoculation with the fungus.
  • Nikkomycin Z targets fungal cell walls, making it a potentially safer treatment option than traditional antifungals, which can have adverse effects due to interactions with human enzymes.
View Article and Find Full Text PDF

In this pilot study, we investigated the utility of handheld ultrasound-guided photoacoustic (US-PA) imaging probe for analyzing ex-vivo breast specimens obtained from female patients who underwent breast-conserving surgery (BCS). We aimed to assess the potential of US-PA in detecting biochemical markers such as collagen, lipids, and hemoglobin, and compare these findings with routine imaging modalities (mammography, ultrasound) and histopathology results, particularly across various breast densities. Twelve ex-vivo breast specimens were obtained from female patients with a mean age of 59.

View Article and Find Full Text PDF

Biosensing plays a pivotal role in various scientific domains, offering significant contributions to medical diagnostics, environmental monitoring, and biotechnology. Fluorescence biosensing relies on the fluorescence emission from labelled biomolecules to enable sensitive and selective identification and quantification of specific biological targets in various samples. Photonic crystal fibers (PCFs) have led to the development of optofluidic fibers enabling efficient light-liquid interaction within small liquid volume.

View Article and Find Full Text PDF

Solid core photonic crystal fibers (SC-PCFs) have garnered attention as probes for surface-enhanced Raman spectroscopy (SERS) due to their potential as optofluidic devices, offering heightened sensitivity and reliability compared to traditional planar/colloidal nanoparticle-based SERS platforms. A smaller core allows for more light interaction but might compromise sensitivity and reliability due to reduced surface area for interaction. Here, we introduce an innovative SC-PCF design aimed at resolving the trade-off between increasing the evanescent field fraction and the core surface area.

View Article and Find Full Text PDF
Article Synopsis
  • * A new non-invasive technique called multispectral Raster-Scanning Optoacoustic Mesoscopy (ms-RSOM) is being tested to objectively measure the severity of psoriasis by analyzing skin features, including blood volume and oxygen levels.
  • * Early results indicate that ms-RSOM can differentiate skin inflammation levels based on metrics like epidermal thickness and blood volume, and it has shown promise in tracking treatment effectiveness, highlighting its potential for regular clinical use.
View Article and Find Full Text PDF

Camera traps became the main observational method of a myriad of species over large areas. Data sets from camera traps can be used to describe the patterns and monitor the occupancy, abundance, and richness of wildlife, essential information for conservation in times of rapid climate and land-cover changes. Habitat loss and poaching are responsible for historical population losses of mammals in the Atlantic Forest biodiversity hotspot, especially for medium to large-sized species.

View Article and Find Full Text PDF

We present a robust, cost-effective (<2000 USD), and portable optical diffuse speckle pulsatile flowmetry (DSPF) device with a flexible handheld probe for deep tissue blood flow measurement in the human foot as well as a first-in-man observational clinical study using the proposed optical device for tissue ischemia assessment and peripheral artery disease (PAD) diagnosis. Blood flow in tissue is inherently pulsatile in nature. However, most conventional methods cannot measure deep tissue-level pulsatile blood flow noninvasively.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates.

View Article and Find Full Text PDF

Breast cancer is a prevalent form of cancer worldwide, and the current standard screening method, mammography, often requires invasive biopsy procedures for further assessment. Recent research has explored microRNAs (miRNAs) in circulating blood as potential biomarkers for early breast cancer diagnosis. In this study, we employed a multi-modal spectroscopy approach, combining attenuated total reflection Fourier transform infrared (ATR-FTIR) and surface-enhanced Raman scattering (SERS) to comprehensively characterize the full-spectrum fingerprints of RNA biomarkers in the blood serum of breast cancer patients.

View Article and Find Full Text PDF

The genitourinary symptom of menopause (GSM) affects up to 65% of women, resulting in symptoms such as vulvovaginal dryness, discomfort, and dysuria, which significantly impacts quality of life. The current assessment methods rely on subjective questionnaires that can be influenced by individual differences, as well as invasive measurements that are time-consuming and not easily accessible. In this study, we explore the potential of a non-invasive and objective assessment tool called diffuse reflectance spectroscopy and imaging (DRSI) to evaluate tissue chromophores, including water, lipid, oxyhemoglobin, and deoxyhemoglobin.

View Article and Find Full Text PDF

Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose.

View Article and Find Full Text PDF

Traditional methods for assessing plant health often lack the necessary attributes for continuous and non-destructive monitoring. In this pilot study, we present a novel technique utilizing a customized fiber optic probe based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) with a contact force control unit for non-invasive and continuous plant health monitoring. We also developed a normalized difference mid-infrared reflectance index through statistical analysis of spectral features, enabling differentiation of drought and age conditions in plants.

View Article and Find Full Text PDF

Surface enhanced Resonance Raman spectroscopy (SERRS) is a powerful technique for enhancing Raman spectra by matching the laser excitation wavelength with the plasmonic resonance and the absorption peak of biomolecules. Here, we propose a tunable Tamm plasmon polariton (TPP) cavity based on a metal on distributed Bragg reflector (DBR) as a scalable sensing platform for SERRS. We develop a gold film-coated ultralow-loss phase change material (SbS) based DBR, which exhibits continuously tunable TPP resonances in the optical wavelengths.

View Article and Find Full Text PDF
Article Synopsis
  • A handheld, non-invasive confocal Raman system was used to study skin differences in people with atopic dermatitis (AD) and psoriasis, which are both inflammatory skin conditions.
  • The study found that the amount of water in the skin decreases in the order of healthy, psoriasis, and AD, indicating varying levels of hydration.
  • Additionally, the research showed differing levels of ceramides and cholesterol between the skin types, which could help in accurately classifying these conditions and developing targeted topical treatments.
View Article and Find Full Text PDF

Lewis hunting reaction refers to the alternating cold-induced vasoconstriction and dilation in extremities, whose underlying mechanism is complex. While numerous studies reported this intriguing phenomenon by measuring cutaneous temperature fluctuation under cold exposure, few of them tracked peripheral vascular responses in real-time, lacking a non-invasive and quantitative imaging tool. To better monitor hunting reaction and diagnose relevant diseases, we developed a hybrid photoacoustic ultrasound (PAUS) tomography system to monitor finger vessels' dynamic response to cold, together with simultaneous temperature measurement.

View Article and Find Full Text PDF

Breast cancer diagnosis is crucial for timely treatment and improved outcomes. This paper proposes a novel approach for rapid breast cancer diagnosis using optical fiber probe-based attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from 750 to 4000 cm . The technique enables direct analysis of tissue samples, eliminating the need for microtome sectioning and staining, thus saving time and resources.

View Article and Find Full Text PDF

Leaf color patterns vary depending on leaf age, pathogen infection, and environmental and nutritional stresses; thus, they are widely used to diagnose plant health statuses in agricultural fields. The visible-near infrared-shortwave infrared (VIS-NIR-SWIR) sensor measures the leaf color pattern from a wide spectral range with high spectral resolution. However, spectral information has only been employed to understand general plant health statuses (e.

View Article and Find Full Text PDF

Advanced precision agriculture requires the objective measurement of the structural and functional properties of plants. Biochemical profiles in leaves can differ depending on plant growing conditions. By quantitatively detecting these changes, farm production processes can be optimized to achieve high-yield, high-quality, and nutrient dense agricultural products.

View Article and Find Full Text PDF

Breast cancer is the most prevalent cancer globally. Early detection is crucial and can be achieved by detecting cancer biomarkers in blood, such as circulating miRNAs (microRNAs). In this study, we present a label-free detection method based on broadband multi-resonant infrared metasurface for surface-enhanced infrared absorption (SEIRA) spectroscopy to detect miRNAs.

View Article and Find Full Text PDF

Molecular vibrations play a crucial role in physical chemistry and biochemistry, and Raman and infrared spectroscopy are the two most used techniques for vibrational spectroscopy. These techniques provide unique fingerprints of the molecules in a sample, which can be used to identify the chemical bonds, functional groups, and structures of the molecules. In this review article, recent research and development activities for molecular fingerprint detection using Raman and infrared spectroscopy are discussed, with a focus on identifying specific biomolecules and studying the chemical composition of biological samples for cancer diagnosis applications.

View Article and Find Full Text PDF

Confocal Raman spectroscopy (CRS) is a powerful tool that has been widely used for biological tissue analysis because of its noninvasive nature, high specificity, and rich biochemical information. However, current commercial CRS systems suffer from limited detection regions (450-1750 cm), bulky sizes, nonflexibilities, slow acquisitions by consecutive excitations, and high costs if using a Fourier transform (FT) Raman spectroscopy with an InGaAs detector, which impede their adoption in clinics. In this study, we developed a portable CRS system with a simultaneous dual-wavelength source and a miniaturized handheld probe (120 mm × 60 mm × 50 mm) that can acquire spectra in both fingerprint (FP, 450-1750 cm) and high wavenumber (HW, 2800-3800 cm) regions simultaneously.

View Article and Find Full Text PDF