Publications by authors named "Olivius N"

Neuronal tissue transplantation is a potential way to replace degenerated spiral ganglion neurons (SGNs) since these cells cannot regenerate in adult mammals. To investigate whether nerve growth factor (NGF) can stimulate neurite outgrowth from implanted neurons, mouse embryonic dorsal root ganglion (DRG) cells expressing enhanced green fluorescent protein (EGFP) were transplanted into the scala tympani of adult rats with a supplement of NGF or artificial perilymph. DRG neurons were observed in the cochlea for up to 6 weeks postoperatively.

View Article and Find Full Text PDF

The regeneration of the auditory nerve remains a challenge in restoring hearing. An interesting approach would be to use a cell replacement therapy with the potential to establish connections from the inner ear to the central auditory system. This hypothesis was tested by xenografted (mouse to rat) implantation of embryonic dorsal root ganglion (DRG) neurons and embryonic stem (ES) cells along the auditory nerve in the adult host.

View Article and Find Full Text PDF

Benefits of cochlear prostheses for the deaf are dependent on survival and excitability of the auditory nerve. Degeneration of deafferented auditory nerve fibers is prevented and excitability maintained by immediate replacement therapy with exogenous neurotrophic factors, in vivo. It is important to know whether such interventions are effective after a delay following deafness, typical for the human situation.

View Article and Find Full Text PDF

The poor regenerative capacity of the spiral ganglion neurons of the mammalian inner ear has initiated research on how to assist the functional recovery of the injured auditory system. A possible treatment is to use a biological implant with a potential to establish central or peripheral synaptic contacts to develop into a functional auditory unit. The feasibility of this approach was tested by xenograft implantation of dorsal root ganglion (DRG) neurons from embryonic days 13 to 14, mouse expressing either LacZ or enhanced green fluorescent protein (EGFP) into the scala tympani of the adult rat inner ear.

View Article and Find Full Text PDF

Objective: Tympanic membrane perforations may cause hearing impairment and otorhea. It is a common indication for ear surgery. The aim of the study was to test whether stem cells may enhance the healing of fresh tympanic membrane perforations.

View Article and Find Full Text PDF

A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses.

View Article and Find Full Text PDF

We have examined whether delayed exogenous NGF administered to an axotomised peripheral nerve reverses the increased transganglionic choleragenoid (CTB) labelling in lamina II. Two, four, eight or 18 weeks after bilateral sciatic nerve section, NGF was applied unilaterally for an additional 2-week period to the transected nerve stump. The transganglionic choleragenoid labelling and substance P (SP) expression were determined and compared to the contralateral axotomised side in the spinal cord dorsal horn.

View Article and Find Full Text PDF