Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE.
View Article and Find Full Text PDFPseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch’s membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity.
View Article and Find Full Text PDFPathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI).
View Article and Find Full Text PDFABCC6 deficiency promotes ectopic calcification; however, circumstantial evidence suggested that ABCC6 may also influence atherosclerosis. The present study addressed the role of ABCC6 in atherosclerosis using Ldlr mice and pseudoxanthoma elasticum (PXE) patients. Mice lacking the Abcc6 and Ldlr genes were fed an atherogenic diet for 16 weeks before intimal calcification, aortic plaque formation and lipoprotein profile were evaluated.
View Article and Find Full Text PDFSupraphysiological levels of the osteoblast-enriched mineralization regulator ectonucleotide pyrophosphatase or phosphodiesterase-1 (NPP1) is associated with type 2 diabetes mellitus. We determined the impact of osteoblast-specific Enpp1 ablation on skeletal structure and metabolic phenotype in mice. Female, but not male, 6-week-old mice lacking osteoblast NPP1 expression (osteoblast-specific knockout [KO]) exhibited increased femoral bone volume or total volume (17.
View Article and Find Full Text PDFActivating type 1 cannabinoid (CB1) receptor decreases the particle size of high-density lipoprotein (HDL) and inhibits reverse cholesterol transport (RCT). This study examined whether marijuana (MJ) use is associated with changes of RCT, and how the latter is associated with mitochondrial function and fluid cognition. We recruited 19 chronic MJ users and 20 nonusers with matched age, BMI, sex, ethnicity, and education.
View Article and Find Full Text PDFPseudoxanthoma elasticum is a heritable disease caused by ABCC6 deficiency. Patients develop ectopic calcification in skin, eyes, and vascular tissues. ABCC6, primarily found in liver and kidneys, mediates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi), a potent inhibitor of calcification.
View Article and Find Full Text PDFBackground: Pseudoxanthoma elasticum (PXE) is a genetic disease caused by mutations in the gene that result in low pyrophosphate levels and subsequent progressive soft tissue calcifications. PXE mainly affects the skin, retina, and arteries. However, many patients with PXE experience kidney stones.
View Article and Find Full Text PDFIschemic stroke causes a high mortality and morbidity worldwide. It results from a complex interplay of incompletely known environmental and genetic risk factors. We investigated the ABCC6 gene as a candidate risk factor for ischemic stroke because of the increased ischemic stroke incidence in the autosomal recessive disorder pseudoxanthoma elasticum, caused by biallelic pathogenic ABCC6 variants, the higher cardiovascular risk in heterozygous carriers and the established role of ABCC6 dysfunction in myocardial ischemia.
View Article and Find Full Text PDFCardiovascular calcification is associated with high risk of vascular disease. This involves macrophage infiltration of injured vascular tissue and osteoclast-related processes. Splenic monocytes from mice, that are predisposed (C3H) or resistant (B6) to calcification, were isolated and differentiated in vitro with M-CSF to generate macrophages, which aggregate to form multinucleated (MN) cells in the presence of RANKL.
View Article and Find Full Text PDFPseudoxanthoma elasticum (PXE) is a rare genetic condition primarily caused by hepatic ABCC6 transporter dysfunction. Most clinical manifestations of PXE are due to premature calcification of elastic fibers. However, the vascular impact of PXE is pleiotropic and remains ill defined.
View Article and Find Full Text PDFPseudoxanthoma elasticum (PXE) is an inherited metabolic disease with autosomal recessive inheritance caused by mutations in the gene. Since the first description of the disease in 1896, alleging a disease involving the elastic fibers, the concept evolved with the further discoveries of the pivotal role of ectopic mineralization that is preponderant in the elastin-rich tissues of the skin, eyes and blood vessel walls. After discovery of the causative gene of the disease in 2000, the function of the ABCC6 protein remains elusive.
View Article and Find Full Text PDFVarious disorders including pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI), which are caused by inactivating mutations in and , respectively, present with extensive tissue calcification due to reduced plasma pyrophosphate (PPi). However, it has always been assumed that the bioavailability of orally administered PPi is negligible. Here, we demonstrate increased PPi concentration in the circulation of humans after oral PPi administration.
View Article and Find Full Text PDFSoft tissue calcification occurs in several common acquired pathologies, such as diabetes and hypercholesterolemia, or can result from genetic disorders. ABCC6, a transmembrane transporter primarily expressed in liver and kidneys, initiates a molecular pathway inhibiting ectopic calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into pyrophosphate (PPi), a major calcification inhibitor.
View Article and Find Full Text PDFSoft-tissue calcification is associated with aging, common conditions such as diabetes or hypercholesterolemia, and with certain genetic disorders. ABCC6 is an efflux transporter primarily expressed in liver facilitating the release of adenosine triphosphate from hepatocytes. Within the liver vasculature, adenosine triphosphate is converted into pyrophosphate, a major inhibitor of ectopic calcification.
View Article and Find Full Text PDFBackground And Aims: The contribution of arterial calcification (AC) in peripheral arterial disease (PAD) and arterial wall compressibility is a matter of debate. Pseudoxanthoma elasticum (PXE), an inherited metabolic disease due to ABCC6 gene mutations, combines elastic fiber fragmentation and calcification in various soft tissues including the arterial wall. Since AC is associated with PAD, a frequent complication of PXE, we sought to determine the role of AC in PAD and arterial wall compressibility in this group of patients.
View Article and Find Full Text PDFBackground: Pseudoxanthoma elasticum (PXE) is characterized by skin (papular lesions), ocular (subretinal neovascularisation) and cardiovascular manifestations (peripheral artery disease), due to mineralization and fragmentation of elastic fibres in the extracellular matrix (ECM). Caused by mutations in the ABCC6 gene, the mechanisms underlying this disease remain unknown. The knowledge on the molecular background of soft tissue mineralization largely comes from insights in vascular calcification, with involvement of the osteoinductive Transforming Growth Factor beta (TGFβ) family (TGFβ1-3 and Bone Morphogenetic Proteins [BMP]), together with ectonucleotides (ENPP1), Wnt signalling and a variety of local and systemic calcification inhibitors.
View Article and Find Full Text PDFBecause vascular or cardiac mineralization is inversely correlated with morbidity and long-term survival, we investigated the role of ABCC6 in the calcification response to cardiac injury in mice. By using two models of infarction, nonischemic cryoinjury and the pathologically relevant coronary artery ligation, we confirmed a large propensity to acute cardiac mineralization in Abcc6−/− mice. Furthermore, when the expression of ABCC6 was reduced to approximately 38% of wild-type levels in Abcc6+/− mice, no calcium deposits in injured cardiac tissue were observed.
View Article and Find Full Text PDFMutations in the ABCC6 gene cause soft-tissue calcification in pseudoxanthoma elasticum (PXE) and, in some patients, generalized arterial calcification of infancy (GACI). PXE is characterized by late onset and progressive mineralization of elastic fibers in dermal, ocular, and cardiovascular tissues. GACI patients present a more severe, often prenatal arterial calcification.
View Article and Find Full Text PDFBackground: Pseudoxanthoma elasticum (PXE), caused by mutations in the ABCC6 gene, is a rare multiorgan disease characterized by the mineralization and fragmentation of elastic fibers in connective tissue. Cardiac complications reportedly associated with PXE are mainly based on case reports.
Methods: A cohort of 67 PXE patients was prospectively assessed.
Rationale: ABCC6 plays a crucial role in ectopic calcification; mutations of the gene cause pseudoxanthoma elasticum and general arterial calcification of infancy. To elucidate the role of ABCC6 in cellular physiology and disease, it is crucial to establish the exact subcellular localization of the native ABCC6 protein.
Objective: In a recent article in Circulation Research, ABCC6 was reported to localize to the mitochondria-associated membrane and not the plasma membrane.