Publications by authors named "Olivier Thoumire"

Biomimetic cell culture systems are required to provide more physiologically relevant microenvironments for bone cells. Here, a simple 2.5D culture platform is proposed, combining adjustable stiffness and surface features that mimic bone topography by using sandpaper grits as master molds with two stiffness formulations of polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO and NO. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species.

View Article and Find Full Text PDF

Three-dimensional (3D) biomimetic cell culture platforms offer more realistic microenvironments that cells naturally experience in vivo. We developed a tunable hyaluronan-based hydrogels that could easily be modified to mimic healthy or malignant extracellular matrices (ECMs). For that, we pre-functionalized our hydrogels with an adhesive polypeptide (poly-l-lysine, PLL) or ECM proteins (type III and type IV collagens), naturally present in tumorous tissues, and next, we tuned their stiffness by crosslinking with gradual concentrations of genipin (GnP).

View Article and Find Full Text PDF

Dispersion of iron nanoparticles (Fe-NPs) was achieved on polyester fabrics (PET) before and after the incorporation of dendrimers (PAMAM), 3-(aminopropyl) triethoxysilane (APTES) or thioglycerol (SH). The catalytic activity of the resulting materials (PET-Fe, PET-PAMAM-Fe, PET-APTES-Fe and PET-SH-FE) was comparatively investigated in the degradation of 4-nitrophenol (4-NP) and methylene-blue (MB). Full characterization through diverse instrumental methods allowed correlating the type of the organic moiety incorporated with the Fe content, catalytic properties and stability.

View Article and Find Full Text PDF

We combined topographical and chemical surface modifications of Ti-6Al-4V (TA6V) to improve its osteogenic potential. By acid-etching, we first generated topomimetic surface features resembling, in size and roughness, bone cavities left by osteoclasts. Next, we coated these surfaces with biomimetic Layer-by-Layer films (LbL), composed of chondroitin sulfate A and poly-l-lysine that were mechanically tuned after a post-treatment with genipin.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionko5ssbhpg3qffkff53i6n1ea2skj68tf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once