Some works have already studied human trajectories during spontaneous locomotion. However, this topic has not been thoroughly studied in the context of human-human interactions, especially during collaborative carriage tasks. Thus, this manuscript aims to provide a broad analysis of the kinematics of two subjects carrying a table.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
April 2022
Cobotic applications require a good knowledge of human behaviour in order to be cleverly, securely and fluidly performed. For example, to make a human and a humanoid robot perform a co-navigation or a co-manipulation task, a model of human walking trajectories is essential to make the robot follow or even anticipate the human movements. This paper aims to study the Center of Mass (CoM) path during locomotion and generate human-like trajectories with an optimal control scheme.
View Article and Find Full Text PDFIn this paper we report results on benchmarking a HRP-2 humanoid robot. The humanoid robots of this serie are known to be very robust. They have been successfully used by several research groups for the design of new motion generation algorithms.
View Article and Find Full Text PDFPrevious studies showed the existence of implicit interaction rules shared by human walkers when crossing each other. Especially, each walker contributes to the collision avoidance task and the crossing order, as set at the beginning, is preserved along the interaction. This order determines the adaptation strategy: the first arrived increases his/her advance by slightly accelerating and changing his/her heading, whereas the second one slows down and moves in the opposite direction.
View Article and Find Full Text PDFRobots and Humans have to share the same environment more and more often. In the aim of steering robots in a safe and convenient manner among humans it is required to understand how humans interact with them. This work focuses on collision avoidance between a human and a robot during locomotion.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
December 2012
Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis.
View Article and Find Full Text PDFWe present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework.
View Article and Find Full Text PDF