In a previous study, it was demonstrated that the toxic impact of titanium dioxide nanoparticles on Escherichia coli starts at 10 ppm and is closely related to the presence of little aggregates. It was also assumed that only a part of the bacterial population is able to adapt to this stress and attempts to survive. Proteomic analyses, supported by results from metabolomics, reveal that exposure of E.
View Article and Find Full Text PDFTo better understand the mechanisms of TiO nanoparticle (NP) uptake and toxicity in aquatic organisms, we investigated the interaction of NPs with the proteins found in gill mucus from blue mussels. Mucus is secreted by many aquatic organisms and is often their first line of defense against pathogens, xenobiotics, and other sources of environmental stress. Here, five TiO NPs and one SiO NP were incubated with gill mucus and run out on a one-dimensional polyacrylamide gel for a comparative qualitative analysis of the free proteins in the mucosal solution and the proteins bound to NPs.
View Article and Find Full Text PDFMultipod-like clusters composed of a silica core and PS satellites are prepared according to a seeded-growth emulsion polymerization of styrene in the presence of size-monodisperse silica particles previously surface-modified with methacryloxymethyltriethoxysilane. Tuning the diameter and concentration of the silica seeds affords homogeneous batches of tetrapods, hexapods, octopods, nonapods and dodecapods with morphology yields as high as 80%. Three-dimensional reconstructions by cryo-electron tomography are presented on large fields for the first time to show the high symmetry and regularity of the clusters demonstrating the good control of the synthesis process.
View Article and Find Full Text PDFShape and size are known to determine a nanoparticle's properties. Hardly ever studied in synthesis, the internal crystal structure (i.e.
View Article and Find Full Text PDFSqualene based nanoparticles obtained via nanoprecipitation are promising candidates as efficient anti-cancer drugs. In order to highlight their preparation process and to facilitate further clinical translation, the present study enlightens the paramount role of the solvent in the formation of these nanomedicines. Three different squalene-based nanoparticles, i.
View Article and Find Full Text PDFThe ecotoxicity of nanoparticles (NPs) is a growing area of research with many challenges ahead. To be relevant, laboratory experiments must be performed with well-controlled and environmentally realistic (i.e.
View Article and Find Full Text PDFICP spectrometry (ICPMS, ICPOES) are classical techniques for the determination of solubilized or suspended elements. Unfortunately, their relevance for nanoparticles at low concentration (below 10 ppm) is rarely called into question, even if literature reports are not always coherent. This work is a systematic study based on the measurement of TiO2 nanoparticle suspensions, as a model of quasi-insoluble material, by plasma spectrometry.
View Article and Find Full Text PDFThe development of functional materials by taking advantage of the physical properties of nanoparticles needs an optimal control over their size and crystal quality. In this context, the synthesis of crystalline oxide nanoparticles in water at room temperature is a versatile and industrially appealing process but lacks control especially for "large" nanoparticles (>30 nm), which commonly consist of agglomerates of smaller crystalline primary grains. Improvement of these syntheses is hampered by the lack of knowledge on possible intermediate, noncrystalline stages, although their critical importance has already been outlined in crystallization processes.
View Article and Find Full Text PDFWe have studied the effect of TiO2 nanoparticles (NPs) on the model cyanobacteria Synechocystis PCC6803. We used well-characterized NPs suspensions in artificial and natural (Seine River, France) waters. We report that NPs trigger direct (cell killing) and indirect (cell sedimentation precluding the capture of light, which is crucial to photosynthesis) deleterious effects.
View Article and Find Full Text PDFThe influence of extracellular polymeric substances (EPS) on cell electrokinetics was investigated in the model cyanobacterium Synechocystis, in wild-type strains and in ten EPS-depleted mutants. The charge density and the softness of the EPS polyelectrolyte layer were calculated from the dependence of the electrophoretic mobility values of the cells with the ionic strength of the surrounding fluid. Electrophoretic mobility data showed that the eleven Synechocystis strains investigated behave as soft particles and cannot be adequately described by classical electrokinetic models of rigid particles.
View Article and Find Full Text PDFLittle is known about the production of exopolysaccharides (EPS) in cyanobacteria, and there are no genetic and physiological evidences that EPS are involved in cell protection against the frequently encountered environmental stresses caused by salt and metals. We studied four presumptive EPS production genes, sll0923, sll1581, slr1875 and sll5052, in the model cyanobacterium Synechocystis PCC6803, which produces copious amounts of EPS attached to cells (CPS) and released in the culture medium (RPS) as shown here. We show that sll0923, sll1581, slr1875 and sll5052 are all dispensable to the growth of all corresponding single and double deletion mutants in absence of stress.
View Article and Find Full Text PDFMicrosecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH₄)₂[PtCl₆]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms).
View Article and Find Full Text PDFEnviron Sci Technol
January 2013
Preparing TiO(2) nanoparticle (NP) suspensions displaying well-defined and reproducible dispersion state is a key feature to perform relevant toxicity experiments for environmental, animal, or human concerns. Relying on the evolution of surface charge with pH, and interactions between nanoparticles in their medium, we developed an optimized dispersion protocol involving a pH adjustment before addition of bovine serum albumin (BSA). It yielded highly dispersed and stable concentrated stock suspensions of TiO(2) NP at pH 7.
View Article and Find Full Text PDFThe size control of gold nanoparticles synthesized in surfactant free water with a continuous flow mode was elucidated and used to produce higher concentration (3 mM) of stabilized gold nanoparticles. The originality of the synthesis was to finely modulate the initial pH of the reducing agent instead of the gold precursor to modify the kinetic of the reaction. The acceleration of the kinetic (~1 s) prevents the modification of the gold precursors ensuring the control of the final size (from 3 to 25 nm) of the nanoparticles with a low polydispersity for aqueous surfactant free solution.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2013
Seine River water was used as a natural environmental medium to quantify the ecotoxicological impact of three types of manufactured titanium dioxide (TiO(2)) nanoparticles toward the model bacterium Escherichia coli. Under ambient light, a significant toxicity starting at 10 ppm of TiO(2) in water was observed. Presence of the anatase polymorph slightly increased the toxicity in comparison to pure rutile samples.
View Article and Find Full Text PDFThrough the heterogeneous nucleation of polymer nodules on a surface-modified silica particle, the high-yield achievement of hybrid colloidal molecules with a well-controlled multipod-like morphology was recently demonstrated. However, as the formation mechanism of these colloidal molecules has not been completely understood yet, some opportunities remain to reduce the tedious empirical process needed to optimize the chemical recipes. In this work, we propose a model to help understand the formation mechanism of almost pure suspensions of well-defined colloidal molecules.
View Article and Find Full Text PDFThe adsorption of two classes of carboxylic ligands (i.e., aliphatic and aromatic small molecules), onto α-alumina nanoparticles was investigated.
View Article and Find Full Text PDFIt is known that silicon can be successfully replaced by germanium atoms in the synthesis of imogolite nanotubes, leading to shorter and larger AlGe nanotubes. Beside the change in morphology, two characteristics of the AlGe nanotube synthesis were recently discovered. AlGe imogolite nanotubes can be synthesized at much higher concentrations than AlSi imogolite.
View Article and Find Full Text PDFGold nanorods in aqueous solution are generally surrounded by surfactants or capping agents. This is crucial for anisotropic growth during synthesis and for their final stability in solution. When CTAB is used, a bilayer has been evidenced from analytical methods even though no direct morphological characterization of the precise thickness and compactness has been reported.
View Article and Find Full Text PDFThe first stages of the nucleation and growth of silica nanoparticles are followed in situ using both SAXS and Raman spectroscopy. Coupling these two techniques allows the determination of the fractions of soluble and solid silica as a function of the reaction time. SAXS also enables demonstrating that major modifications of the structure occur after the initial precipitation period, inducing an increase of the precipitate density.
View Article and Find Full Text PDFThe propagation of traveling chemical waves in the excitable Belousov-Zhabotinsky (BZ) system when performed in the presence of 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) bilayers responds sensitively to the phospholipid content. The characteristic features of wave propagation, such as spiral pitch, rotation period, and size of the spiral core region, show two regions of different behavior, one below and the other above a DPPC content of 12.5% (w/w) thus suggesting a transition in the organization of the lipid domains at a DPPC content of ∼12.
View Article and Find Full Text PDFAtomic Force Microscopy (AFM) and in situ Small Angle X-ray Scattering (SAXS) were used to investigate the evolution of the aluminogermanate imogolite-like nanotubes concentration and morphology during their synthesis. In particular, in situ SAXS allowed quantifying the transformation of protoimogolite into nanotubes. The size distribution of the final nanotubes was also assessed after growth by AFM.
View Article and Find Full Text PDFA quantitative analysis of object populations obtained by TEM images is performed for the classical scheme of aqueous seedless synthesis of nanorods. Using an effective way to represent nanoparticle size distributions, we unravel that spheres, usually considered to be a side-product, are in fact coming from a competing route during nanorod formation. The differentiation between spheres and rods appears above a critical size of 5 nm and is due to different growth rates between faces.
View Article and Find Full Text PDFThe production of highly monodisperse nanoparticles of precisely controlled size is a very important research field. It has important applications notably for the optical properties of nanoparticles (e.g.
View Article and Find Full Text PDFIt has been recently discovered that the synthesis of Al-Ge imogolite-like nanotubes is possible at high concentration. Despite this initial success, the structure of these Al-Ge imogolite-like nanotubes remains not completely understood. Using high resolution cryo-TEM and Small Angle X-ray Scattering, we unravel their mesoscale structure in two contrasted situations.
View Article and Find Full Text PDF