Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered.
View Article and Find Full Text PDFBackground: Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy.
View Article and Find Full Text PDFThe postsynaptic inhibition through GABA receptors (GABAR) relies on two mechanisms, a shunting effect due to an increase in the postsynaptic membrane conductance and, in mature neurons, a hyperpolarization effect due to an entry of chloride into postsynaptic neurons. The second effect requires the action of the K-Cl cotransporter KCC2 which extrudes Cl from the cell and maintains its cytosolic concentration very low. Neuronal chloride equilibrium seems to be dysregulated in several neurological and psychiatric conditions such as epilepsy, anxiety, schizophrenia, Down syndrome, or Alzheimer's disease.
View Article and Find Full Text PDFMalformation of cortical development (MCD) is a family of neurodevelopmental disorders, which usually manifest with intellectual disability and early-life epileptic seizures. Mutations in genes encoding microtubules (MT) and MT-associated proteins are one of the most frequent causes of MCD in humans. KIF2A is an atypical kinesin that depolymerizes MT in ATP-dependent manner and regulates MT dynamics.
View Article and Find Full Text PDFThe function of the amyloid precursor protein (APP) is not fully understood, but its cleavage product amyloid beta (Aβ) together with neurofibrillary tangles constitute the hallmarks of Alzheimer's disease (AD). Yet, imbalance of excitatory and inhibitory neurotransmission accompanied by loss of synaptic functions, has been reported much earlier and independent of any detectable pathological markers. Recently, soluble APP fragments have been shown to bind to presynaptic GABA receptors (GABARs), subsequently decreasing the probability of neurotransmitter release.
View Article and Find Full Text PDFDiaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle.
View Article and Find Full Text PDFTo survive and proliferate in solid tumors, cancer cells adapt and evolve rapidly in microenvironments where oxygen and substrate bioavailability fluctuates over time and space. This creates metabolic heterogeneity. Cancer cells can further cooperate metabolically, for example by swapping glycolytic end-product lactate for blood-borne glucose.
View Article and Find Full Text PDFBackground: Non-alcoholic fatty liver (NAFL) disease (NAFLD) is the most common chronic liver disease in the world. While most subjects have 'inert' NAFL, a subset will progress to non-alcoholic steatohepatitis (NASH) and its life-threatening complications. A substantial body of literature supports that a low muscle mass, low strength, and/or muscle fatty infiltration (myosteatosis) are associated with NAFLD severity.
View Article and Find Full Text PDFDefects in protein reabsorption by the proximal tubule are toxic for epithelial cells in the nephron and may result in nephropathy. In this study, we showed that the ion channel TRPV4 modulated the endocytosis of albumin and low-molecular weight proteins in the proximal tubule. TRPV4 was found at the basolateral side of proximal tubule cells, and its mechanical activation by cell stretching induced Ca entry into the cytosol, which promoted endocytosis.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the gene alters the extinction of spatial reference memory.
View Article and Find Full Text PDFIn the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.
View Article and Find Full Text PDFWe previously investigated whether inhibition of AMP-metabolizing enzymes could enhance AMP-activated protein kinase (AMPK) activation in skeletal muscle for the treatment of type 2 diabetes. Soluble 5'-nucleotidase II (NT5C2) hydrolyzes IMP and its inhibition could potentially lead to a rise in AMP to activate AMPK. In the present study, we investigated effects of NT5C2 deletion in mice fed a normal-chow diet (NCD) or a high-fat diet (HFD).
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors, in particular mGluR5, have been implicated in various forms of synaptic plasticity that are believed to underlie declarative memory. We observed that mGluR5 specifically activated a channel containing TRPC1, an isoform of the canonical family of transient receptor potential (TRPC) channels highly expressed in CA1-3 regions of the hippocampus. TRPC1 is able to form tetrameric complexes with TRPC4 and/or TRPC5 isoforms.
View Article and Find Full Text PDFLactate exchange between glycolytic and oxidative cancer cells is proposed to optimize tumor growth. Blocking lactate uptake through monocarboxylate transporter 1 (MCT1) represents an attractive therapeutic strategy but may stimulate glucose consumption by oxidative cancer cells. We report here that inhibition of mitochondrial pyruvate carrier (MPC) activity fulfils the tasks of blocking lactate use while preventing glucose oxidative metabolism.
View Article and Find Full Text PDFSpinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets.
View Article and Find Full Text PDFFatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFTRPV4 is a polymodal cation channel expressed in osmosensitive neurons of the hypothalamus and in the mammalian nephron. The segmental distribution and role(s) of TRPV4 in osmoregulation remain debated. We investigated the renal distribution pattern of TRPV4 and the functional consequences of its disruption in mouse models.
View Article and Find Full Text PDFBackground: The proinflammatory cytokine interleukin-1β (IL-1β) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-β (Aβ) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1β maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD.
View Article and Find Full Text PDFBackground: The hormone adiponectin (ApN) is decreased in the metabolic syndrome, where it plays a key pathogenic role. ApN also exerts some anti-inflammatory effects on skeletal muscles in mice exposed to acute or chronic inflammation. Here, we investigate whether ApN could be sufficiently potent to counteract a severe degenerative muscle disease, with an inflammatory component such as Duchenne muscular dystrophy (DMD).
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A).
View Article and Find Full Text PDFIncreased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK).
View Article and Find Full Text PDFThe purpose of the present work was to progress in our understanding of the pathophysiology of L-2-hydroxyglutaric aciduria, due to a defect in L-2-hydroxyglutarate dehydrogenase, by creating and studying a mouse model of this disease. L-2-hydroxyglutarate dehydrogenase-deficient mice (l2hgdh-/-) accumulated L-2-hydroxyglutarate in tissues, most particularly in brain and testis, where the concentration reached ≈ 3.5 μmol/g.
View Article and Find Full Text PDFWe previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from wild type (APP+/+) and APP knockout mice (APP-/-), we observed that APP down regulates expression of four immediate early genes, Egr1, c-Fos, Bdnf and Arc.
View Article and Find Full Text PDF