Upon DNA damage, cells activate the DNA damage response (DDR) to coordinate proliferation and DNA repair. Dietary, metabolic, and environmental inputs are emerging as modulators of how DNA surveillance and repair take place. Lipids hold potential to convey these cues, although little is known about how.
View Article and Find Full Text PDFPolyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling.
View Article and Find Full Text PDFThe switch from gluconeogenesis to glycolysis in yeast has been shown to require ubiquitin-proteasome dependent elimination of the key enzyme fructose-1,6-bisphosphatase (FBPase). Prior to proteasomal degradation, polyubiquitination of the enzyme occurs via the ubiquitin-conjugating enzymes Ubc1, Ubc4, Ubc5 and Ubc8 in conjunction with a novel multi-subunit ubiquitin ligase, the Gid complex. As an additional machinery required for the catabolite degradation process, we identified the trimeric Cdc48(Ufd1-Npl4) complex and the ubiquitin receptors Dsk2 and Rad23.
View Article and Find Full Text PDFGlucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase.
View Article and Find Full Text PDF