Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data.
View Article and Find Full Text PDFIn coffee, fruit production on a given shoot drops after some years of high yield, triggering pruning to induce resprouting. The timing of pruning is a crucial farmer's decision affecting yield and labour. One reason for fruit production drop could be the exhaustion of resources, particularly the non-structural carbohydrates (NSC).
View Article and Find Full Text PDFCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked.
View Article and Find Full Text PDFIn the version of this Article originally published, the wrong Supplementary Information pdf was uploaded, in which the figures did not correspond with those mentioned in the main text and the R code was not presented properly. This has now been replaced.
View Article and Find Full Text PDFForests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events.
View Article and Find Full Text PDFThe total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPP), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO. Given the importance of understanding the IAV in CO fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPP in forest ecosystems.
View Article and Find Full Text PDFHypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits.
View Article and Find Full Text PDFIn agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics.
View Article and Find Full Text PDFThe total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPP), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO. Given the importance of understanding the IAV in CO fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPP in forest ecosystems.
View Article and Find Full Text PDFBackground and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees.
View Article and Find Full Text PDFTerrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes.
View Article and Find Full Text PDFMore than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale.
View Article and Find Full Text PDFTerrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%.
View Article and Find Full Text PDFThe thermogenesis and flowering biology of Colocasia gigantea (Blume) Hook. f. were studied from December 2005 to February 2006 on Espiritu Santo, Vanuatu (South Pacific).
View Article and Find Full Text PDF