Publications by authors named "Olivier Rival"

We investigate via experiments and simulations the statistical properties and the accumulation of nonlinear transmission impairments in coherent systems without optical dispersion compensation. We experimentally show that signal distortion due to Kerr nonlinearity can be modeled as additive Gaussian noise, and we demonstrate that its variance has a supra-linear dependence on propagation distance for 100 Gb/s transmissions over both low dispersion and standard single mode fiber. We propose a simple empirical model to account for linear and nonlinear noise accumulation, and to predict system performance for a wide range of distances, signal powers and optical noise levels.

View Article and Find Full Text PDF

Using X-band pulsed electron-spin resonance, we report the intrinsic spin-lattice (T1) and phase-coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M=Ni and Mn, phase-coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 micros at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.

View Article and Find Full Text PDF