Publications by authors named "Olivier R Costa"

Aim: Several biomarkers have been proposed to detect pancreatic β cell destruction in vivo but so far have not been compared for sensitivity and significance.

Methods: We used islet transplantation as a model to compare plasma concentrations of miR-375, 65-kDa subunit of glutamate decarboxylase (GAD65), and unmethylated insulin DNA, measured at subpicomolar sensitivity, and study their discharge kinetics, power for outcome prediction, and detection of graft loss during follow-up.

Results: At 60 minutes after transplantation, GAD65 and miR-375 consistently showed near-equimolar and correlated increases proportional to the number of implanted β cells.

View Article and Find Full Text PDF

A disproportional increase of circulating GAD65 within hours from an intraportal islet allotransplantation has been validated as biomarker of beta cell loss and poor functional outcome. More sensitive assays are, however, needed to allow detection of episodes of subtle beta cell loss during late-stage graft rejection or in the peri-onset period of type 1 diabetes. We applied the same sandwich monoclonal antibody couple reactive towards the C- and N-terminus of GAD65 on three advanced immunoassay platforms-the Cytometric Bead Array (CBA, Becton, Dickinson and Company), ElectroChemiLuminescence ImmunoAssay (ECLIA, Meso Scale Discovery) and digital ELISA technology (Single Molecule Array-SIMOA, Quanterix.

View Article and Find Full Text PDF

There is a clinical need for plasma tests to detect and quantify the in vivo destruction of pancreatic β-cells in type 1 diabetes. We previously developed a time-resolved fluorescence immunoassay (TRFIA) to glutamate decarboxylase 65 kDa (GAD65) (GAD65-TRFIA) that was able to detect the synchronous necrotic destruction of transplanted β-cells in the hours after their infusion in the liver. This GAD65-TRFIA, however, lacked sensitivity to detect continued β-cell rejection beyond this acute phase.

View Article and Find Full Text PDF