Since its beginnings in the 1960s, soft robotics has been a steadily growing field that has enjoyed recent growth with the advent of rapid prototyping and the provision of new flexible materials. These two innovations have enabled the development of fully flexible and untethered soft robotic systems. The integration of novel sensors enabled by new manufacturing processes and materials shows promise for enabling the production of soft systems with 'embodied intelligence'.
View Article and Find Full Text PDFThe growing interest in soft robots comes from the new possibilities offered by these systems to cope with problems that cannot be addressed by robots built from rigid bodies. Many innovative solutions have been developed in recent years to design soft components and systems. They all demonstrate how soft robotics development is closely dependent on advanced manufacturing processes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Active cardiac stabilization has a role to play in the development of minimally invasive techniques for beating heart surgery. We propose here a new active cardiac stabilization device based on gyroscopic actuation. This system allows to compensate for heart motion in high frequencies and is fully independant and pluggable on conventional stabilizers.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2008
In this paper, we present a novel robotic assistant dedicated to medical interventions under computed tomography scan guidance. This compact and lightweight patient-mounted robot is designed so as to fulfill the requirements of most interventional radiology procedures. It is built from an original 5 DOF parallel structure with a semispherical workspace, particularly well suited to CT-scan interventional procedures.
View Article and Find Full Text PDF