Publications by authors named "Olivier Mousis"

Cometary comae are a mixture of gas and ice-covered dust. Processing on the surface and in the coma change the composition of ice on dust grains relative to that of the nucleus. As the ice on dust grains sublimates, the local coma composition changes.

View Article and Find Full Text PDF

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission.

View Article and Find Full Text PDF

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history.

View Article and Find Full Text PDF

A lightweight, low-power instrument package to measure, both (1) the local gaseous environment and (2) the composition and microphysical properties of attendant venusian aerosols is presented. This Aerosol-Sampling Instrument Package (ASIP) would be used to explore cloud chemical and possibly biotic processes on future aerial missions such as multiweek balloon missions and on short-duration (<1 h) probes on Venus and potentially on other cloudy worlds such as Titan, the Ice Giants, and Saturn. A quadrupole ion-trap mass spectrometer (QITMS; Madzunkov and Nikolić, 25:1841-1852, 2014) fed alternately by (1) an aerosol separator that injects only aerosols into a vaporizer and mass spectrometer and (2) the pure aerosol-filtered atmosphere, achieves the compositional measurements.

View Article and Find Full Text PDF

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors.

View Article and Find Full Text PDF

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O in a cometary environment. The large relative abundance of O in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets.

View Article and Find Full Text PDF

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer Double Focusing Mass Spectrometer on board the European Space Agency's Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it was found that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances.

View Article and Find Full Text PDF

To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds.

View Article and Find Full Text PDF

The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen.

View Article and Find Full Text PDF

The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations.

View Article and Find Full Text PDF

Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet.

View Article and Find Full Text PDF

Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated.

View Article and Find Full Text PDF

We present here a comparative planetology study of evolution of N/N at Mars and Titan. Studies show that N/N can evolve a great deal as a result of escape in the atmosphere of Mars, but not in Titan's atmosphere. We explain this through the existence of an upper limit to the amount of fractionation allowed to occur due to escape that is a function of the escape flux and the column density of nitrogen.

View Article and Find Full Text PDF

We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets.

View Article and Find Full Text PDF

The origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation.

View Article and Find Full Text PDF

Motivated by the possibility of comparing theoretical predictions of Lake Vostok's composition with future in situ measurements, we investigated the composition of clathrates that are expected to form in this environment from the air supplied to the lake by melting ice. To establish the best possible correlation between the lake water composition and that of air clathrates formed in situ, we used a statistical thermodynamic model based on the description of the guest-clathrate interaction by a spherically averaged Kihara potential with a nominal set of potential parameters. We determined the fugacities of the different volatiles present in the lake by defining a "pseudo" pure substance dissolved in water owning the average properties of the mixture and by using the Redlich-Kwong equation of state to mimic its thermodynamic behavior.

View Article and Find Full Text PDF

The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems.

View Article and Find Full Text PDF

The sensitivity of gas hydrate occupancies predicted on the basis of van der Waals-Platteeuw theory is investigated, as a function of the intermolecular guest-water interaction potential model, and of the number of water molecules taken into account. Simple analytical correction terms that account for the interactions with the water molecules beyond the cutoff distance are introduced, and shown to improve significantly the convergence rate, and hence the efficiency of the computation of the Langmuir constants. The predicted cage occupancies in pure methane and pure carbon dioxide clathrates, calculated using different recent guest-water pair potentials models derived from ab initio calculations, can vary significantly depending on the model.

View Article and Find Full Text PDF