Publications by authors named "Olivier Lengline"

We monitor optically the propagation of a slow interfacial mode III crack along a heterogeneous weak interface and compare it to mode I loading. Pinning and depinning of the front on local toughness asperities within the process zone are the main mechanisms for fracture roughening. Geometrical properties of the fracture fronts are derived in the framework of self-affine scale invariance and Family-Vicsek scaling.

View Article and Find Full Text PDF

Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz).

View Article and Find Full Text PDF

Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes.

View Article and Find Full Text PDF

We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions.

View Article and Find Full Text PDF

Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly.

View Article and Find Full Text PDF