Coordination-driven self-assembly has been established as an effective strategy for the efficient construction of intricate architectures in both natural and artificial systems, for applications ranging from gene regulation to metal-organic frameworks. Central to these systems is the need for carefully designed organic ligands, generally with rigid components, that can undergo self-assembly with metal ions in a predictable manner. Herein, we report the synthesis and study of three novel organic ligands that feature 3,6-disubstituted acridine as a rigid spacer connected to two 2-(1,2,3-triazol-4-yl)pyridine "click" chelates through hinges of the same length but differing flexibility.
View Article and Find Full Text PDFThe 2-(1,2,3-triazol-4-yl)pyridine motif, with its facile "click" synthesis and remarkable coordinative properties, is an attractive chelate for applications in the metal-directed self-assembly of intricate three-dimensional structures. Organic ligands that bear two such chelates bridged by flexible hinge moieties readily undergo self-assembly with metal ions of different coordination geometries to generate a series of topologically diverse metallomacrocycles that can be used for numerous applications. Herein, the synthesis and self-assembly of one such ligand with zinc(II), copper(II), and palladium(II) ions is reported, and the stability of the resulting metallomacrocycles described.
View Article and Find Full Text PDFWith its facile synthesis, the pyridine-1,2,3-triazole chelate is an attractive building block for coordination-driven self-assembly. When two such chelates are bridged by a spacer and exposed to cations of octahedral geometrical preference, they generally self-assemble into dinuclear triple-stranded structures in the solid state and in solution in the presence of non-coordinating counter-ions. In solution, a wider range of architectures may nevertheless form, depending on the nature of the spacer.
View Article and Find Full Text PDFCoordination studies of the pyridine-triazole diad to copper(i) and silver(i) reveal the potential and conditions for the solution- and solid-state self-assembly of supramolecular architectures based on this motif.
View Article and Find Full Text PDFExposure to aryl isocyanates, intermediates in the manufacture of polyurethanes, provokes lung sensitization and asthma but also occupational allergic contact dermatitis, sensitization occurring from a single accidental exposure. The initial step in the sensitization process is believed to be the covalent binding of the -N triple bond C triple bond O group with nucleophilic residues on proteins. While a wide knowledge exists on the reactivity of skin sensitizers toward amino acids, little is known about respiratory sensitizers such as aryl isocyanates.
View Article and Find Full Text PDF