Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter.
View Article and Find Full Text PDFA central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Translational control is crucial for well-balanced cellular function and viability of organisms. Different mechanisms have evolved to up- and down-regulate protein synthesis, including 3' untranslated region (UTR)-mediated translation repression. RNA binding proteins or microRNAs interact with regulatory sequence elements located in the 3' UTR and interfere most often with the rate-limiting initiation step of translation.
View Article and Find Full Text PDFLife Sci Alliance
January 2024
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation.
View Article and Find Full Text PDFThis graphical review provides a mechanistic overview of different molecular processes that are tightly coupled and cooperate to achieve efficient and spatial-temporally regulated co-transcriptional protein-RNA complex assembly, including co-transcriptional RNA folding, processing, modification and the assembly in context of biomolecular condensates.
View Article and Find Full Text PDFThe ribosome is among the most ancient macromolecular complexes. Throughout evolution, the function of the ribosome has remained essential and conserved: the decoding of an mRNA template with tRNA-linked amino acids, to synthesize a protein. In a recent study, Holm et al.
View Article and Find Full Text PDFRibosome assembly is one of the most fundamental processes of gene expression and has served as a playground for investigating the molecular mechanisms of how protein-RNA complexes (RNPs) assemble. A bacterial ribosome is composed of around 50 ribosomal proteins, several of which are co-transcriptionally assembled on a ~4500-nucleotide-long pre-rRNA transcript that is further processed and modified during transcription, the entire process taking around 2 min in vivo and being assisted by dozens of assembly factors. How this complex molecular process works so efficiently to produce an active ribosome has been investigated over decades, resulting in the development of a plethora of novel approaches that can also be used to study the assembly of other RNPs in prokaryotes and eukaryotes.
View Article and Find Full Text PDFRibosome assembly is an efficient but complex and heterogeneous process during which ribosomal proteins assemble on the nascent rRNA during transcription. Understanding how the interplay between nascent RNA folding and protein binding determines the fate of transcripts remains a major challenge. Here, using single-molecule fluorescence microscopy, we follow assembly of the entire 3' domain of the bacterial small ribosomal subunit in real time.
View Article and Find Full Text PDFCellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C.
View Article and Find Full Text PDFPosttranscriptional regulation of gene expression by small noncoding RNAs (sRNAs) is an important control mechanism that modulates bacterial metabolism, motility, and pathogenesis. Using the bacterial carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) system, we here describe an E. coli-based cell-free translation assay that allows a quantitative analysis of translation regulation by ncRNAs and their corresponding translation repressor proteins.
View Article and Find Full Text PDFThe cyclooxygenase-2 is a pro-inflammatory and cancer marker, whose mRNA stability and translation is regulated by the CUG-binding protein 2 interacting with AU-rich sequences in the 3' untranslated region. Here, we present the solution NMR structure of CUG-binding protein 2 RRM3 in complex with 5'-UUUAA-3' originating from the COX-2 3'-UTR. We show that RRM3 uses the same binding surface and protein moieties to interact with AU- and UG-rich RNA motifs, binding with low and high affinity, respectively.
View Article and Find Full Text PDFRNA is a crucial regulator involved in most molecular processes of life. Understanding its function at the molecular level requires high-resolution structural information. However, the dynamic nature of RNA complicates structure determination because crystallization is often not possible or can result in crystal-packing artifacts resulting in nonnative structures.
View Article and Find Full Text PDFAlthough functional significance of large noncoding RNAs and their complexes with proteins is well recognized, structural information for this class of systems is very scarce. Their inherent flexibility causes problems in crystallographic approaches, while their typical size is beyond the limits of state-of-the-art purely NMR-based approaches. Here, we review an approach that combines high-resolution NMR restraints with lower resolution long-range constraints based on site-directed spin labeling and measurements of distance distribution restraints in the range between 15 and 80Å by the four-pulse double electron-electron resonance (DEER) EPR technique.
View Article and Find Full Text PDFHigh-resolution structural information on RNA and its functionally important complexes with proteins is dramatically underrepresented compared with proteins but is urgently needed for understanding cellular processes at the molecular and atomic level. Here we present an EPR-based protocol to help solving large RNA and protein-RNA complex structures in solution by providing long-range distance constraints between rigid fragments. Using enzymatic ligation of smaller RNA fragments, large doubly spin-labelled RNAs can be obtained permitting the acquisition of long distance distributions (>80 Å) within a large protein-RNA complex.
View Article and Find Full Text PDFMicroRNA and protein sequestration by non-coding RNAs (ncRNAs) has recently generated much interest. In the bacterial Csr/Rsm system, which is considered to be the most general global post-transcriptional regulatory system responsible for bacterial virulence, ncRNAs such as CsrB or RsmZ activate translation initiation by sequestering homodimeric CsrA-type proteins from the ribosome-binding site of a subset of messenger RNAs. However, the mechanism of ncRNA-mediated protein sequestration is not understood at the molecular level.
View Article and Find Full Text PDFThe carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE.
View Article and Find Full Text PDFThe three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and (1)H and (13)C chemical shifts. Statistics of resonances from regularly Watson-Crick base-paired RNA revealed highly characteristic chemical shift clusters.
View Article and Find Full Text PDFNMR spectroscopy has become substantial in the elucidation of RNA structures and their complexes with other nucleic acids, proteins or small molecules. Almost half of the RNA structures deposited in the Protein Data Bank were determined by NMR spectroscopy, whereas NMR accounts for only 11% for proteins. Recent improvements in isotope labeling of RNA have strongly contributed to the high impact of NMR in RNA structure determination.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
February 2011
Structural information on RNA, emerging more and more as a major regulator in gene expression, dramatically lags behind compared with information on proteins. Although NMR spectroscopy has proven to be an excellent tool to solve RNA structures, it is hampered by the severe spectral resonances overlap found in RNA, limiting its use for large RNA molecules. Segmental isotope labeling of RNA or ligation of a chemically synthesized RNA containing modified nucleotides with an unmodified RNA fragment have proven to have high potential in overcoming current limitations in obtaining structural information on RNA.
View Article and Find Full Text PDFProteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA.
View Article and Find Full Text PDF