Publications by authors named "Olivier Duclos"

Background: The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life.

Experimental Approach: Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01.

View Article and Find Full Text PDF

We recently described C18 fatty acid acylated peptides as a new class of potent long-lasting single-chain RXFP1 agonists that displayed relaxin-like activities in vivo. Early pharmacokinetics and toxicological studies of these stearic acid acylated peptides revealed a relevant oxidative metabolism occurring in dog and minipig, and also seen at a lower extent in monkey and rat. Mass spectrometry combined to NMR spectroscopy studies revealed that the oxidation occurred, unexpectedly, on the stearic acid chain at ω-1, ω-2 and ω-3 positions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new peptide called SA10SC-RLX that has a longer half-life and can be administered subcutaneously, overcoming the limitations of recombinant relaxin-2 that requires intravenous use.
  • SA10SC-RLX has high activity on human RXFP1, showing positive renal effects in rats, such as increased kidney blood flow and reduced resistance, similar to relaxin's effects in humans.
  • This new peptide represents a promising option for treating chronic fibrotic and cardiovascular diseases, as it allows for once-daily subcutaneous administration, making it more practical for patients.
View Article and Find Full Text PDF

Cell-penetrating peptides enter cells via diverse mechanisms, such as endocytosis, active transport, or direct translocation. For the design of orally delivered cell-penetrating peptides, it is crucial to know the contribution of these different mechanisms. In particular, the ability of a peptide to translocate through a lipid bilayer remains a key parameter for the delivery of cargos.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9), identified as a regulator of low-density lipoprotein receptor (LDLR), plays a major role in cardiovascular diseases (CVD). Recently, Pep2-8, a small peptide with discrete three-dimensional structure, was found to inhibit the PCSK9/LDLR interaction. In this paper, we describe the modification of this peptide using stapled peptide and SIP technologies.

View Article and Find Full Text PDF

Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, C-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions.

View Article and Find Full Text PDF
Article Synopsis
  • Human relaxin-2 is a hormone important for mediating blood flow changes during pregnancy and has potential benefits in treating acute heart failure, but its clinical use is limited due to a short half-life and requirement for intravenous administration.
  • Researchers developed long-acting relaxin peptide mimetics by modifying the B-chain of relaxin, leading to simpler and more potent peptide agonists for the relaxin receptor RXFP1.
  • These new lipidated peptide agonists demonstrated high activity, better bioavailability when taken subcutaneously, and longer half-lives, making them promising candidates for wider therapeutic use.
View Article and Find Full Text PDF

Understanding how small molecules cross cell membranes is crucial to pharmaceutics. Several methods have been developed to evaluate such a process, but they need improvement since many false-positive candidates are often selected. Robust tools enabling rapid and reproducible screening can increase confidence on hits, and artificial membranes based on droplet interface bilayers (DIBs) offer this possibility.

View Article and Find Full Text PDF

H2-relaxin (RLN2) is a two-chain peptide hormone structurally related to insulin with a therapeutic potential in multiple indications. However, multiple injections of human RLN2 induced anti-RLN2 Abs in patients, hampering its clinical development. As T cell activation is required to produce Abs, we wondered whether T cells specific for RLN2 might be already present in the human blood before any injection.

View Article and Find Full Text PDF

Aims: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKDs) are genetic diseases characterized by renal cyst formation with increased cell proliferation, apoptosis, and transition to a secretory phenotype at the expense of terminal differentiation. Despite recent progress in understanding PKD pathogenesis and the emergence of potential therapies, the key molecular mechanisms promoting cystogenesis are not well understood. Here, we demonstrate that mechanisms including endoplasmic reticulum stress, oxidative damage, and compromised mitochondrial function all contribute to nephronophthisis-associated PKD.

View Article and Find Full Text PDF

SAR131675 is a potent and selective VEGFR-3 inhibitor. It inhibited VEGFR-3 tyrosine kinase activity and VEGFR-3 autophosphorylation in HEK cells with IC(50) values of 20 and 45 nmol/L, respectively. SAR131675 dose dependently inhibited the proliferation of primary human lymphatic cells, induced by the VEGFR-3 ligands VEGFC and VEGFD, with an IC(50) of about 20 nmol/L.

View Article and Find Full Text PDF