The cosmic microwave background (CMB) places a variety of model-independent constraints on the strength interactions of the dominant component of dark matter with the standard model. Percent-level subcomponents of the dark matter can evade the most stringent CMB bounds by mimicking the behavior of baryons, allowing for larger couplings and novel experimental signatures. However, in this Letter, we will show that such tightly coupled subcomponents leave a measurable imprint on the CMB that is well approximated by a change to the helium fraction, Y_{He}.
View Article and Find Full Text PDFBaryon-density perturbations of large amplitude may exist if they are compensated by dark-matter perturbations such that the total density is unchanged. Primordial abundances and galaxy clusters allow these compensated isocurvature perturbations (CIPs) to have amplitudes as large as ~10%. CIPs will modulate the power spectrum of cosmic microwave background (CMB) fluctuations--those due to the usual adiabatic perturbations--as a function of position on the sky.
View Article and Find Full Text PDFPrimordial non-Gaussianity is a crucial test of inflationary cosmology. We consider the impact of non-Gaussianity on the ionization power spectrum from 21 cm emission at the epoch of reionization. We focus on the power spectrum on large scales at redshifts of 7 to 8 and explore the expected constraint on the local non-Gaussianity parameter f(NL) for current and next-generation 21 cm experiments.
View Article and Find Full Text PDF