During red-blood-cell-stage infection of Plasmodium falciparum, the parasite undergoes repeated rounds of replication, egress, and invasion. Erythrocyte invasion involves specific interactions between host cell receptors and parasite ligands and coordinated expression of genes specific to this step of the life cycle. We show that a parasite-specific bromodomain protein, PfBDP1, binds to chromatin at transcriptional start sites of invasion-related genes and directly controls their expression.
View Article and Find Full Text PDFSurvival and virulence of the human malaria parasite Plasmodium falciparum during the blood stage of infection critically depend on extensive host cell refurbishments mediated through export of numerous parasite proteins into the host cell. The parasite-derived membranous structures called Maurer's clefts (MC) play an important role in protein trafficking from the parasite to the red blood cell membrane. However, their specific function has yet to be determined.
View Article and Find Full Text PDFIn a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1.
View Article and Find Full Text PDFA new family of pentacyclic compounds incorporating a central 1,2-dihydropyridine core is obtained through a pseudo three-component reaction. Four new bonds and two stereocenters with trans relationship are produced during the cascade process under palladium catalysis.
View Article and Find Full Text PDF