Publications by authors named "Olivier De Backer"

TSG-6 is a soluble protein secreted in the extracellular matrix by various cell types in response to inflammatory stimuli. TSG-6 interacts with extracellular matrix molecules, particularly hyaluronan (HA), and promotes cutaneous wound closure in mice. Between epidermal cells, the discrete extracellular matrix contains HA and a tiny amount of TSG-6.

View Article and Find Full Text PDF
Article Synopsis
  • Keratoglobus is a rare eye condition causing corneal thinning and bulging, leading to vision loss and potential corneal perforation, but its genetic causes are not yet known.
  • The study analyzed 3 families with keratoglobus to identify its genetic basis, involving advanced sequencing techniques and mouse models.
  • Results revealed that mutations in the TMEM45A gene are associated with the disorder, with significant gene expression differences observed in affected corneas compared to healthy tissue.
View Article and Find Full Text PDF

Melanoma antigen genes (Mage) were first described as tumour markers. However, some of Mage are also expressed in healthy cells where their functions remain poorly understood. Here, we describe an unexpected role for one of these genes, Maged1, in the control of behaviours related to drug addiction.

View Article and Find Full Text PDF

The tumor suppressor p53 is a key regulator of apoptosis induced by various cellular stresses. p53 can induce apoptosis by two mechanisms. First, p53 acts as a transcription factor inducing and repressing pro-apoptotic and anti-apoptotic targets genes, respectively.

View Article and Find Full Text PDF

Background: Three pregnancies with male offspring in one family were complicated by severe polyhydramnios and prematurity. One fetus died; the other two had transient massive salt-wasting and polyuria reminiscent of antenatal Bartter's syndrome.

Methods: To uncover the molecular cause of this possibly X-linked disease, we performed whole-exome sequencing of DNA from two members of the index family and targeted gene analysis of other members of this family and of six additional families with affected male fetuses.

View Article and Find Full Text PDF

TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype.

View Article and Find Full Text PDF

Following a genotoxic stress, the tumor suppressor p53 translocates to mitochondria to take part in direct induction of apoptosis, via interaction with BCL-2 family members such as BAK and BAX. We determined the kinetics of the mitochondrial translocation of p53 in HCT-116 and PA-1 cells exposed to different genotoxic stresses (doxorubicin, camptothecin, UVB). This analysis revealed an early escalation in the amount of mitochondrial p53, followed by a peak amount and a decrease of mitochondrial p53 at later time points.

View Article and Find Full Text PDF

The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains.

View Article and Find Full Text PDF

Background: Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells.

Methods: MDA-MB-231 and HepG2 cells were incubated in the presence of taxol or etoposide respectively under normoxia and hypoxia and apoptosis was analysed.

View Article and Find Full Text PDF

MAGED1, NECDIN and MAGEL2 are members of the MAGE gene family. The latter two of these genes have been involved in Prader-Willi syndrome (PWS), which includes hyperphagia, repetitive and compulsive behaviors, and cognitive impairment. Here, we show that Maged1-deficient mice develop progressive obesity associated with hyperphagia and reduced motor activity.

View Article and Find Full Text PDF

Background: In normal adult skeletal muscle, cell turnover is very slow. However, after an acute lesion or in chronic pathological conditions, such as primary myopathies, muscle stem cells, called satellite cells, are induced to proliferate, then withdraw definitively from the cell cycle and fuse to reconstitute functional myofibers.

Results: We show that Maged1 is expressed at very low levels in normal adult muscle but is strongly induced after injury, during the early phase of myoblast differentiation.

View Article and Find Full Text PDF

Neurotrophin binding to the p75 neurotrophin receptor (p75(NTR)) activates neuronal apoptosis following adult central nervous system injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth factor (proNGF) induces death of retinal ganglion cells in adult rodents via a p75(NTR)-dependent signaling mechanism. Expression of p75(NTR) in the adult retina is confined to Müller glial cells; therefore we tested the hypothesis that proNGF activates a non-cell-autonomous signaling pathway to induce retinal ganglion cell (RGC) death.

View Article and Find Full Text PDF

Development of axonal tracts requires interactions between growth cones and the environment. Tracts such as the anterior commissure and internal capsule are defective in mice with null mutation of Celsr3. We generated a conditional Celsr3 allele, allowing regional inactivation.

View Article and Find Full Text PDF

Human tumor development is often associated with a DNA demethylation process. This results in the activation of germline-specific genes, such as MAGE-A1, which rely on DNA methylation for repression in somatic tissues. Here, we searched to identify a cell line possessing ongoing DNA demethylation activity targeted to MAGE-A1.

View Article and Find Full Text PDF

In the embryonic CNS, the development of axonal tracts is required for the formation of connections and is regulated by multiple genetic and microenvironmental factors. Here we show that mice with inactivation of Celsr3, an ortholog of Drosophila melanogaster flamingo (fmi; also known as starry night, stan) that encodes a seven-pass protocadherin, have marked, selective anomalies of several major axonal fascicles, implicating protocadherins in axonal development in the mammalian CNS for the first time. In flies, fmi controls planar cell polarity (PCP) in a frizzled-dependent but wingless-independent manner.

View Article and Find Full Text PDF

Homeodomain containing transcription factors of the Hox family play critical roles in patterning the anteroposterior embryonic body axis, as well as in controlling several steps of organogenesis. Several Hox proteins have been shown to cooperate with members of the Pbx family for the recognition and activation of identified target enhancers. Hox proteins contact Pbx via a conserved hexapeptide motif.

View Article and Find Full Text PDF

The MAGED gene subfamily contains three genes in mouse and four in human. The MAGED1, D2, and D3 proteins are highly conserved between mouse and human, whereas paralogues are less conserved between each other. This finding suggests that each MAGED protein exerts a distinct function.

View Article and Find Full Text PDF

The Disabled-1 (Dab1) gene encodes a key regulator of Reelin signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly Cajal-Retzius cells. The DAB1 protein docks to the intracellular part of the Reelin very low density lipoprotein receptor and apoE receptor type 2 and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons.

View Article and Find Full Text PDF