Publications by authors named "Olivier Cunrath"

The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity.

View Article and Find Full Text PDF

Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, , by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays.

View Article and Find Full Text PDF

Nutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon.

View Article and Find Full Text PDF

Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number.

View Article and Find Full Text PDF

Siderophores are iron chelators produced by bacteria to access iron, an essential nutrient. The pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, the former with a high affinity for iron and the latter with a lower affinity. Furthermore, the production of both siderophores involves a positive auto-regulatory loop: the presence of the ferri-siderophore complex is essential for their large production.

View Article and Find Full Text PDF

Background: Gene editing is key for elucidating gene function. Traditional methods, such as consecutive single-crossovers, have been widely used to modify bacterial genomes. However, cumbersome cloning and limited efficiency of negative selection often make this method slower than other methods such as recombineering.

View Article and Find Full Text PDF

The pleiotropic host resistance factor SLC11A1 (NRAMP1) defends against diverse intracellular pathogens in mammals by yet-unknown mechanisms. We compared infection of coisogenic mice with different alleles. SLC11A1 reduced replication and triggered up-regulation of uptake systems for divalent metal cations but no other stress responses.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that metals like cobalt (Co) can hinder iron (Fe) acquisition in bacteria by interfering with the action of siderophores, which are molecules that help microbes gather Fe.
  • In Pseudomonas aeruginosa, Co is incorporated into the cell via a siderophore called pyochelin (PCH) through a specific transporter, leading to decreased production of PCH.
  • The study reveals that this reduction in PCH production is caused not by the typical regulatory mechanism involving the Fur protein, but instead by competition between PCH-Co and PCH-Fe for a key transcriptional activator (PchR), which is necessary for PCH gene expression.
View Article and Find Full Text PDF

Background: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown.

View Article and Find Full Text PDF

Infected host tissues have complex anatomy, diverse cell types, and dynamic inflammation. Traditional infection biology approaches largely ignore this complex host environment and its impact on pathogens, but recent single-cell technologies unravel extensively heterogeneous host-pathogen interactions in vivo. Salmonella are major model pathogens in this field due to the availability of excellent mouse disease models and facile molecular biology.

View Article and Find Full Text PDF

Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions.

View Article and Find Full Text PDF

Previous studies have suggested that antibiotic vectorization by siderophores (iron chelators produced by bacteria) considerably increases the efficacy of such drugs. The siderophore serves as a vector: when the pathogen tries to take up iron via the siderophore, it also takes up the antibiotic. Catecholates are among the most common iron-chelating compounds used in synthetic siderophore-antibiotic conjugates.

View Article and Find Full Text PDF

In this paper, we describe the total metal composition (metallome) of Pseudomonas aeruginosa. Inductively coupled plasma atomic emission spectroscopy analyses showed that P. aeruginosa cells concentrate each metal of the metallome from the extracellular media with different efficiencies.

View Article and Find Full Text PDF

Pyoverdine I (PVDI) and pyochelin (PCH) are the two major siderophores produced by Pseudomonas aeruginosa PAO1 to import iron. The biochemistry of the biosynthesis of these two siderophores has been described in detail in the literature over recent years. PVDI assembly requires the coordinated action of seven cytoplasmic enzymes and is followed by a periplasmic maturation before secretion of the siderophore into the extracellular medium by the efflux system PvdRT-OpmQ.

View Article and Find Full Text PDF

Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.

View Article and Find Full Text PDF

The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis.

View Article and Find Full Text PDF