In the quest to market increasingly safer and more potent biotherapeutic proteins, the concept of the multi-attribute method (MAM) has emerged from biopharmaceutical companies to boost the quality-by-design process development. MAM strategies rely on state-of-the-art analytical workflows based on liquid chromatography coupled to mass spectrometry (LC-MS) to identify and quantify a selected series of critical quality attributes (CQA) in a single assay. Here, we aimed at evaluating the repeatability and robustness of a benchtop LC-MS platform along with bioinformatics data treatment pipelines for peptide mapping-based MAM studies using standardized LC-MS methods, with the objective to benchmark MAM methods across laboratories, taking nivolumab as a case study.
View Article and Find Full Text PDFBiopharmaceutical sequences can be well confirmed by multiple protease digests-e.g., trypsin, elastase, and chymotrypsin-followed by LC-MS/MS data analysis.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity.
View Article and Find Full Text PDFMiddle-up LC-MS antibody characterization workflows using reduction or IdeS digestion for a focused assessment of N-glycan profiling of three representative glycoengineered monoclonal antibodies (mAbs), namely, obinutuzumab (GlycomAb technology, Glycart/Roche), benralizumab (Potelligent Technology, BioWa, Kyowa Kirin) and mAb B (kifunensine) and compared to mAb A, produced in a common CHO cell line. In addition, EndoS or EndoS2 enzyme are used for quantitative determination of Fc-glycan core afucosylation and high mannose for these antibodies, as requested by health authorities for Fc-competent therapeutics mAbs critical quality attributes (CQAs).
View Article and Find Full Text PDFWhen analyzing large complex protein biopharmaceuticals, ion-pairing agents imparting low pH are widely used as mobile phase additives to improve the chromatographic performance. However, one of the most effective additives in RPLC and HILIC, trifluoroacetic acid (TFA), is known as a strong suppressor of the MS signal and limits its use in hyphenated techniques. In this study, we evaluated a wide range of acidic additives to find alternatives to TFA that provided comparable chromatographic performance and improved MS sensitivity.
View Article and Find Full Text PDFMost of the current FDA and EMA approved therapeutic monoclonal antibodies (mAbs) are based on humanized or human IgG1, 2, or 4 subclasses and engineered variants. On the structural side, these subclasses are characterized by specific interchain disulfide bridge connections. Different analytical techniques have been reported to assess intact IgGs subclasses, with recently special interest in native ion mobility (IM) and collision induced unfolding (CIU) mass spectrometry (MS).
View Article and Find Full Text PDFIn the present work, a generic non-reducing capillary electrophoresis sodium dodecyl sulphate (nrCE-SDS) method was tested for a wide range of 26 FDA and EMA approved monoclonal antibodies (mAbs) and 2 antibody drug conjugates (ADCs) as well as for the NISTmab, in a QC environment (e.g. testing quality requirements for batch manufacturing or batch release).
View Article and Find Full Text PDFHigh-resolution native mass spectrometry (MS) provides accurate mass measurements (within 30 ppm) of intact ADCs and can also yield drug load distribution (DLD) and average drug to antibody ratio (DAR) in parallel with hydrophobic interaction chromatography (HIC). Native MS is furthermore unique in its ability to simultaneously detect covalent and noncovalent species in a mixture and for HIC peak identity assessment offline or online.As an orthogonal method described in this chapter, LC-MS following ADC reduction or IdeS (Fabricator) digestion and reduction can also be used to measure the DLD of light chain and Fd fragments for hinge native cysteine residues such as brentuximab vedotin.
View Article and Find Full Text PDFThe determination of mAb critical quality attributes (CQA) is crucial for their successful application in health diseases. A generic CZE method was developed for the high-resolution separation of various mAb charge variants, which are often recognized as important CQA. A dynamic coating of the capillary was obtained with polyethylene oxide (PEO), whereas Bis-Tris allowed the analysis of mAbs under native conditions at pH 7.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2018
Mass spectrometry performed in non-denaturing conditions (native MS), and its hyphenation to ion mobility spectrometry (IM-MS), have gained interest for the qualitative and quantitative characterization of intact monoclonal antibody-related (mAb) products. However, one main drawback is the manual sample preparation, which hampers its routine use in high throughput automated environments. Size exclusion chromatography (SEC) appears as an interesting technique to perform online buffer exchange in an automated way.
View Article and Find Full Text PDFThere are currently two main techniques allowing the analytical characterization of interchain cysteine-linked antibody drug conjugates (ADCs) under native conditions, namely, hydrophobic interaction chromatography (HIC) and native mass spectrometry (MS). HIC is a chromatographic technique allowing the evaluation of drug load profile and calculation of average drug-to-antibody ratio (DAR) in quality control laboratories. Native MS offers structural insights into multiple ADC critical quality attributes, thanks to accurate mass measurement.
View Article and Find Full Text PDFCharacterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2017
Despite the popularity of targeted and immune therapies, the number of studies dealing with the quantitation of aggregates for Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved mAb and related products are still very scarce in literature. In this work, 30 therapeutic proteins including monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), Fc-fusion proteins and a bi-specific antibody (bsAb) were investigated using size exclusion chromatography (SEC). Their levels of high molecular weight species (HMWS) were experimentally estimated between 0.
View Article and Find Full Text PDFJunctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2017
The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed.
View Article and Find Full Text PDFChemical or enzymatic modifications of therapeutic monoclonal antibodies (mAbs) having high risk towards safety and efficacy are defined as critical quality attributes (CQAs). During therapeutic mAbs process development, a variety of analytical techniques have to be used for the thorough characterization and quantitative monitoring of CQAs. This paper describes the development of a rapid analytical platform to assess and rank charge variants of mAbs.
View Article and Find Full Text PDFThe aim of this study was to evaluate the practical possibilities and limitations of several recently introduced size exclusion chromatographic (SEC) columns of 150×4.6mm, sub-3μm (Agilent AdvanceBioSEC 2.7μm, Tosoh TSKgel UP-SW3000 2.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2016
This paper is the second part of a two-part series dedicated to the development of an on-line comprehensive HICxRPLC-UV/MS method for the characterization of a commercial inter-chain cysteine-linked ADC (brentuximab vedotin, Adcetris(®)). The first part focused on the optimization of the chromatographic conditions. In the second part of this series of papers, the structural characterization of the Brentuximab Vedotin was extensively discussed.
View Article and Find Full Text PDFThe regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called "bottom-up" approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach.
View Article and Find Full Text PDFAntibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions.
View Article and Find Full Text PDFThe approval process for antibody biosimilars relies primarily on comprehensive analytical data to establish comparability and high similarity with the originator. Mass spectrometry (MS) in combination with liquid chromatography (LC) and electrophoretic methods are the corner stone for comparability and biosimilarity evaluation. In this special feature we report head-to-head comparison of trastuzumab and cetuximab with corresponding biosimilar and biobetter candidates based on cutting-edge mass spectrometry techniques such as native MS and ion-mobility MS at different levels (top, middle and bottom).
View Article and Find Full Text PDFThe bioproduction of recombinant monoclonal antibodies results in complex mixtures of a main isoform and numerous macro- and microvariants. Monoclonal antibodies therefore present different levels of heterogeneities ranging from primary sequence variants to post-translational modifications. Among these heterogeneities, the truncation and fragmentation of the primary amino-acid sequence result in shorter or cleaved polypeptide chains while the incomplete processing of the signal peptide produces N-terminal elongated polypeptide chains.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging.
View Article and Find Full Text PDFAntibody drug conjugates (ADCs) are macromolecules composed of cytotoxic drugs covalently attached via a conditionally stable linker to monoclonal antibodies (mAbs). ADCs are among the most promising next generation of empowered mAbs foreseen to treat cancers. Compared to naked mAbs, ADCs have an increased level of complexity as the heterogeneity of conjugation cumulates with the inherent microvariability of the biomolecule.
View Article and Find Full Text PDF