Human olfactory receptor, hOR17-210, is identified as a pseudogene in the human genome. Experimental data has shown however, that the gene product of frame-shifted, cloned hOR17-210 cDNA was able to bind an odorant-binding protein and is narrowly tuned for excitation by cyclic ketones. Supported by experimental results, we used the bioinformatics methods of sequence analysis (genome-wide and pair-wise), computational protein modeling and docking, to show that functionality in this receptor is retained due to sequence-structure features not previously observed in mammalian ORs.
View Article and Find Full Text PDFThis study targets to express the piglet odorant-binding protein (plOBP) and compare the engineered product to the corresponding native protein forms, i.e. plOBP and adult porcine OBP (pOBP).
View Article and Find Full Text PDFOlfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue.
View Article and Find Full Text PDFScorpion stings represent a medical problem in numerous countries. The scorpion Androctonus australis hector produces three alpha toxins (Aah I to III), which are responsible for most of the lethality in mammals. These toxins act on sodium channel and do not cross-react immunologically.
View Article and Find Full Text PDFScorpion neurotoxins acting on ion channels share some structural features but differ in antigenic and immunogenic properties. They are highly structured peptides, 60-70 amino acids long. Monoclonal antibodies have been obtained for Androctonus australis hector scorpion venom neurotoxin II (AahII) and a nontoxic synthetic analog ((Abu)(8) AahII).
View Article and Find Full Text PDFOdorant-binding proteins (OBPs) represent a highly abundant class of proteins secreted in the nasal mucus by the olfactory neuroepithelium. These proteins display binding affinity for a variety of odorant molecules, thereby assuming the role of carrier during olfactory perception. However, no specific interaction between OBP and olfactory receptors (ORs) has yet been shown and early events in olfaction remain so far poorly understood at a molecular level.
View Article and Find Full Text PDF