Brief Bioinform
January 2024
Increasing volumes of biomedical data are amassing in databases. Large-scale analyses of these data have wide-ranging applications in biology and medicine. Such analyses require tools to characterize and process entries at scale.
View Article and Find Full Text PDFCyclodipeptide synthases (CDPSs) use two aminoacyl-tRNAs (AA-tRNAs) to catalyse cyclodipeptide formation in a ping-pong mechanism. Despite intense studies of these enzymes in past years, the tRNA regions of the two substrates required for CDPS activity are poorly documented, mainly because of two limitations. First, previously studied CDPSs use two identical AA-tRNAs to produce homocyclodipeptides, thus preventing the discriminative study of the binding of the two substrates.
View Article and Find Full Text PDFAn intricate stem cell niche boundary formed by finger-like extensions generates asymmetry in stem cell divisions.
View Article and Find Full Text PDFA critical event in mammalian embryo development is construction of an inner cell mass surrounded by a trophoectoderm (a shell of cells that later form extraembryonic structures). We utilize multi-scale, stochastic modeling to investigate the design principles responsible for robust establishment of these structures. This investigation makes three predictions, each supported by our quantitative imaging.
View Article and Find Full Text PDFAssaying in vivo accrual of DNA damage and DNA mutations by stem cells and pinpointing sources of damage and mutations would further our understanding of aging and carcinogenesis. Two main hurdles must be overcome. First, in vivo mutation rates are orders of magnitude lower than raw sequencing error rates.
View Article and Find Full Text PDFSelf-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.
View Article and Find Full Text PDFPositional information derived from local morphogen concentration plays an important role in patterning. A key question is how morphogen diffusion and gene expression regulation shape positional information into an appropriate profile with suitably low noise. We address this question using a model system--the C.
View Article and Find Full Text PDFBackground: Analysis of single cells in their native environment is a powerful method to address key questions in developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial information about the spatial organization of the tissue and morphological features of the cells. This technique is rapidly evolving but is still not in widespread use among research groups that do not specialize in technique development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the best use of their time in injecting their domain-specific knowledge.
View Article and Find Full Text PDFBMC Bioinformatics
August 2015
Background: In many domains, scientists build complex simulators of natural phenomena that encode their hypotheses about the underlying processes. These simulators can be deterministic or stochastic, fast or slow, constrained or unconstrained, and so on. Optimizing the simulators with respect to a set of parameter values is common practice, resulting in a single parameter setting that minimizes an objective subject to constraints.
View Article and Find Full Text PDFBackground: Stem cells are thought to play a critical role in minimizing the accumulation of mutations, but it is not clear which strategies they follow to fulfill that performance objective. Slow cycling of stem cells provides a simple strategy that can minimize cell pedigree depth and thereby minimize the accumulation of replication-dependent mutations. Although the power of this strategy was recognized early on, a quantitative assessment of whether and how it is employed by biological systems is missing.
View Article and Find Full Text PDFThe mechanisms regulating cell division during development of the mouse pre-implantation embryo are poorly understood. We have investigated whether bone morphogenetic protein (BMP) signaling is involved in controlling cell cycle during mouse pre-implantation development. We mapped and quantitated the dynamic activities of BMP signaling through high-resolution immunofluorescence imaging combined with a 3D segmentation method.
View Article and Find Full Text PDFStem cells niches are increasingly recognized as dynamic environments that play a key role in transducing signals that allow an organism to exert control on its stem cells. Live imaging of stem cell niches in their in vivo setting is thus of high interest to dissect stem cell controls. Here we report a new microfluidic design that is highly amenable to dissemination in biology laboratories that have no microfluidics expertise.
View Article and Find Full Text PDFWe describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2010
Controls of stem cell maintenance and early differentiation are known in several systems. However, the progression from stem cell self-renewal to overt signs of early differentiation is a poorly understood but important problem in stem cell biology. The Caenorhabditis elegans germ line provides a genetically defined model for studying that progression.
View Article and Find Full Text PDFStem cells are expected to play a key role in the development and maintenance of organisms, and hold great therapeutic promises. However, a number of questions must be answered to achieve an understanding of stem cells and put them to use. Here I review some of these questions, and how they relate to the model system provided by the Caenorhabditis elegans germ line, which is exceptional in its thorough genetic characterization and experimental accessibility under in vivo conditions.
View Article and Find Full Text PDFThe segmentation of vertebrate embryos depends on a complex genetic network that generates highly dynamic gene expression. Many of the elements of the network have been identified, but their interaction and their influence on segmentation remain poorly understood. A few mathematical models have been proposed to explain the dynamics of subsets of the network, but the mechanistic bases remain controversial.
View Article and Find Full Text PDFBackground: The mouse anterior visceral endoderm (AVE) and the chick hypoblast are thought to have homologous roles in the early stages of neural induction and primitive streak formation. In mouse, many regulatory elements directing gene expression to the AVE have been identified. However, there is no technique to introduce DNA into the chick hypoblast that would enable a comparison of their activity and this has hampered a direct comparison of the regulation of gene expression in the mouse and chick extraembryonic endoderm.
View Article and Find Full Text PDFThe oscillations of the somitogenesis clock are linked to the fundamental process of vertebrate embryo segmentation, yet little is known about their generation. In zebrafish, it has been proposed that Her proteins repress the transcription of their own mRNA. However, in its simplest form, this model is incompatible with the fact that morpholino knockdown of Her proteins can impair expression of their mRNA.
View Article and Find Full Text PDFHigh-dimensional switches have been proposed as a way to model cellular differentiation, particularly in the context of basic Helix-Loop-Helix (bHLH) competitive heterodimerization networks. A previous study derived a simple rule showing how many elements can be co-expressed, depending on the rate of competition within the network. A limitation to that rule, however, is that many biochemical parameters were considered to be identical.
View Article and Find Full Text PDFThe readout of morphogen concentrations has been proposed to be an essential mechanism allowing embryos to specify cell identities [Wolpert Trends Genet 12 (1996) 359], but theoretical and experimental results have led to conflicting ideas as to how useful concentration gradients can be established. In particular, it has been pointed out that some models of passive extracellular diffusion exhibit traveling waves of receptor saturation, inadequate for the establishment of positional information. Two alternative (but not mutually exclusive) models are proposed here, which are based on recent experimental results highlighting the roles of extracellular glycoproteins and morphogen oligomerization.
View Article and Find Full Text PDFMany genes have been identified as driving cellular differentiation, but because of their complex interactions, the understanding of their collective behaviour requires mathematical modelling. Intriguingly, it has been observed in numerous developmental contexts, and particularly haematopoiesis, that genes regulating differentiation are initially co-expressed in progenitors despite their antagonism, before one is upregulated and others downregulated. We characterise conditions under which three classes of generic "master regulatory networks", modelled at the molecular level after experimentally observed interactions (including bHLH protein dimerisation), and including an arbitrary number of antagonistic components, can behave as a "multi-switch", directing differentiation in an all-or-none fashion to a specific cell-type chosen among more than two possible outcomes.
View Article and Find Full Text PDFA striking pattern of oscillatory gene expression, related to the segmentation process (somitogenesis), has been identified in chick, mouse, and zebrafish embryos. Somitogenesis displays great autonomy, and it is generally assumed in the literature that somitogenesis-related oscillations are cell-autonomous in chick and mouse. We point out in this article that there would be many biological reasons to expect some mechanism of coupling between cellular oscillators, and we present a model with such coupling, but which also has autonomous properties.
View Article and Find Full Text PDFWe discuss the influence of positive and negative feedback on the stability of a system, which is not clear-cut, and involves complex, mathematical problems. We show in particular that positive feedback can have a stabilising effect on some systems. We also point out the role that positive feedback plays in the digital treatment of signals required by cellular signalling, drawing on analogies from electronics, and the role that negative feedback plays in making a system robust against alteration of its parameters.
View Article and Find Full Text PDFMost biological regulation systems comprise feedback circuits as crucial components. Negative feedback circuits have been well understood for a very long time; indeed, their understanding has been the basis for the engineering of cybernetic machines exhibiting stable behaviour. The importance of positive feedback circuits, considered as "vicious circles", has however been underestimated.
View Article and Find Full Text PDF