This work deals with the stochastic inference of gas-phase chemical reaction rates in high temperature air flows from plasma wind tunnel experimental data. First, a Bayesian approach is developed to include not only measurements but also additional information related to how the experiment is performed. To cope with the resulting computationally demanding likelihood, we use the Morris screening method to find the reactions that influence the solution to the stochastic inverse problem from a mechanism comprising 21 different reactions for an air mixture with seven species: O2, N2, NO, NO+, O, N, e-.
View Article and Find Full Text PDFAblative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions.
View Article and Find Full Text PDF