Publications by authors named "Olivier Baris"

Hereditary optic neuropathies, including dominant optic atrophy and Leber's hereditary optic neuropathy, are genetic disorders characterized by retinal ganglion cell degeneration leading to vision loss, mainly associated with mitochondrial dysfunction. In this study, we analysed mitochondrial distribution and ultrastructure in the retina and longitudinal optic nerve sections of pre-symptomatic hereditary optic neuropathies mouse models with Opa1 and Nd6 deficiency to identify early mitochondrial changes. Our results show significant mitochondrial fragmentation and increased mitophagy in mice, indicating early mitochondrial changes prior to neuronal loss.

View Article and Find Full Text PDF

Epidermis is one of the most rapidly proliferating tissues in the body with high demands for adenosine triphosphate and cellular building blocks. In this study, we show that to meet these requirements, keratinocytes constitutively express HIF-1α, even in the presence of oxygen levels sufficient for HIF-1α hydroxylation. We previously reported that mice with severe epidermal mitochondrial dysfunction actually showed a hyperproliferative epidermis but rapidly died of systemic lactic acidosis and hypoglycemia, indicating excessive glycolysis.

View Article and Find Full Text PDF

The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation.

View Article and Find Full Text PDF

Faulkes et al. recently showed that naked mole-rats (NMRs) have a very distinctive cardiac gene expression profile among other African mole-rats, as well as metabolic variations that result from their chronic exposure to a hypoxic environment. These adaptations might underlie their resistance to cardiac ischemic injuries.

View Article and Find Full Text PDF

Mitochondrial dynamics is a process that balances fusion and fission events, the latter providing a mechanism for segregating dysfunctional mitochondria. Fission is controlled by the mitochondrial membrane potential (ΔΨm), optic atrophy 1 (OPA1) cleavage, and DRP1 recruitment. It is thought that this process is closely linked to the activity of the mitochondrial respiratory chain (MRC).

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated.

View Article and Find Full Text PDF

To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished.

View Article and Find Full Text PDF

Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is a ubiquitous lipid serving essential cellular functions. It is the only component of the mitochondrial respiratory chain that can be exogenously absorbed. Here, we provide an overview of current knowledge, controversies, and open questions about CoQ intracellular and tissue distribution, in particular in brain and skeletal muscle.

View Article and Find Full Text PDF

The formation of dentin and enamel matrix depends on reciprocal interactions between epithelial-mesenchymal cells. To assess the role of mitochondrial function in amelogenesis and dentinogenesis, we studied postnatal incisor development in K320E-Twinkle mice. In these mice, a loss of mitochondrial DNA (mtDNA), followed by a severe defect in the oxidative phosphorylation system is induced specifically in Keratin 14 (K14+) expressing epithelial cells.

View Article and Find Full Text PDF

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy.

View Article and Find Full Text PDF

Cancer/Testis Antigens (CTAs) genes are expressed only during spermatogenesis and tumorigenesis. Both processes share common specific metabolic adaptation related to energy supply, with a glucose to lactate gradient, leading to changes in mitochondrial physiology paralleling CTAs expression. In this review, we address the role of CTAs in mitochondria (mitoCTAs), by reviewing all published data, and assessing the putative localization of CTAs by screening for the presence of a mitochondrial targeting sequence (MTS).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to gain insights on the pathogenesis of chronic progressive external ophthalmoplegia, thus we investigated the vulnerability of five extra ocular muscles (EOMs) fiber types to pathogenic mitochondrial DNA deletions in a mouse model expressing a mutated mitochondrial helicase TWINKLE.

Methods: Consecutive pairs of EOM sections were analyzed by cytochrome C oxidase (COX)/succinate dehydrogenase (SDH) assay and fiber type specific immunohistochemistry (type I, IIA, IIB, embryonic, and EOM-specific staining).

Results: The mean average of COX deficient fibers (COX-) in the recti muscles of mutant mice was 1.

View Article and Find Full Text PDF

Mitochondrial dysfunction is critically involved in Parkinson's disease, characterized by loss of dopaminergic neurons (DaNs) in the substantia nigra (SNc), whereas DaNs in the neighboring ventral tegmental area (VTA) are much less affected. In contrast to VTA, SNc DaNs engage calcium channels to generate action potentials, which lead to oxidant stress by yet unknown pathways. To determine the molecular mechanisms linking calcium load with selective cell death in the presence of mitochondrial deficiency, we analyzed the mitochondrial redox state and the mitochondrial membrane potential in mice of both sexes with genetically induced, severe mitochondrial dysfunction in DaNs (MitoPark mice), at the same time expressing a redox-sensitive GFP targeted to the mitochondrial matrix.

View Article and Find Full Text PDF

In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth.

View Article and Find Full Text PDF

Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions and a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation.

View Article and Find Full Text PDF

Background: During aging a mosaic of normal cells and cells with mitochondrial deficiency develops in various tissues including the heart. Whether this contributes to higher susceptibility for arrhythmia following myocardial infarction (MI) is unknown.

Methods And Results: Myocardial cryoinfarction was performed in 12-month-old transgenic mice with accelerated accumulation of deletions in mitochondrial DNA.

View Article and Find Full Text PDF

Background: Aging is a multifactorial process characterized by organ loss of function and degeneration, but the mechanisms involved remain elusive. We have shown recently that catecholamine metabolism drives the accumulation of mitochondrial DNA (mtDNA) deletions in dopaminergic cells, which likely contribute to their degeneration during aging. Here we investigated whether the well-documented degeneration and altered function of adrenals during aging is linked to catecholamine production in the medulla followed by accumulation of mtDNA deletions.

View Article and Find Full Text PDF

Objective: To validate new mitochondrial myopathy serum biomarkers for diagnostic use.

Methods: We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions.

View Article and Find Full Text PDF

Aging is a progressive decline of body function, during which many tissues accumulate few cells with high levels of deleted mitochondrial DNA (mtDNA), leading to a defect of mitochondrial functions. Whether this mosaic mitochondrial deficiency contributes to organ dysfunction is unknown. To investigate this, we generated mice with an accelerated accumulation of mtDNA deletions in the myocardium, by expressing a dominant-negative mutant mitochondrial helicase.

View Article and Find Full Text PDF

Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling.

View Article and Find Full Text PDF

Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen).

View Article and Find Full Text PDF

To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined.

View Article and Find Full Text PDF