The canonical BRG/BRM-associated factor (cBAF) complex is essential for chromatin opening at enhancers in mammalian cells. However, the nature of the open chromatin remains unclear. Here, we show that, in addition to producing histone-free DNA, cBAF generates stable hemisome-like subnucleosomal particles containing the four core histones associated with 50-80 bp of DNA.
View Article and Find Full Text PDFChromosome fusions threaten genome integrity and promote cancer by engaging catastrophic mutational processes, namely chromosome breakage-fusion-bridge cycles and chromothripsis. Chromosome fusions are frequent in cells incurring telomere dysfunctions or those exposed to DNA breakage. Their occurrence and therefore their contribution to genome instability in unchallenged cells is unknown.
View Article and Find Full Text PDFTranscription and maintenance of genome integrity are fundamental cellular functions. Deregulation of transcription and defects in DNA repair lead to serious pathologies. The Mediator complex links RNA polymerase (Pol) II transcription and nucleotide excision repair via Rad2/XPG endonuclease.
View Article and Find Full Text PDFCells from Bloom's syndrome patients display genome instability due to a defective BLM and the downregulation of cytidine deaminase. Here, we use a genome-wide RNAi-synthetic lethal screen and transcriptomic profiling to identify genes enabling BLM-deficient and/or cytidine deaminase-deficient cells to tolerate constitutive DNA damage and replication stress. We found a synthetic lethal interaction between cytidine deaminase and microtubule-associated protein Tau deficiencies.
View Article and Find Full Text PDFMediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches.
View Article and Find Full Text PDFMediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module.
View Article and Find Full Text PDFMediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair.
View Article and Find Full Text PDFRNA polymerase (Pol) III synthesizes the tRNAs, the 5S ribosomal RNA and a small number of untranslated RNAs. In vitro, it also transcribes short interspersed nuclear elements (SINEs). We investigated the distribution of Pol III and its associated transcription factors on the genome of mouse embryonic stem cells using a highly specific tandem ChIP-Seq method.
View Article and Find Full Text PDFThe inhibitor of DNA binding 2, dominant negative helix-loop-helix protein, ID2, acts as an oncogene and elevated levels of ID2 have been reported in several malignancies. Whereas some inducers of the ID2 gene have been characterized, little is known regarding the proteins capable to repress its expression. We developed siRNA microarrays to perform a large scale loss-of-function screen in human adult keratinocytes engineered to express GFP under the control of the upstream region of ID2 gene.
View Article and Find Full Text PDFIonizing radiation causes rapid and acute suppression of hematopoietic cells that manifests as the hematopoietic syndrome. However, the roles of molecules and regulatory pathways induced in vivo by irradiation of different hematopoietic cells have not been completely elaborated. Using a strategy that combined different microarray bioinformatics tools, we identified gene networks that might be involved in the early response of hematopoietic cells radiation response in vivo.
View Article and Find Full Text PDFBackground: Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation.
View Article and Find Full Text PDFBackground: The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades.
Results: Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively.
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2).
View Article and Find Full Text PDFAccurate estimation of the dose of ionizing radiation to which individuals have been exposed is critical for therapeutic treatment. We investigated whether gene expression profiles could be used to evaluate the dose received, thereby serving as a biological dosimeter. We used cDNA microarrays to monitor changes in gene expression profiles induced by ionizing radiation in mouse total blood.
View Article and Find Full Text PDFThe goal of our study was to identify a subset of genes commonly expressed in Side Populations (SP), isolated by Hoechst staining followed by flow cytometry, from adult mouse bone marrow, male adult germinal cells, muscle primary culture, and mesenchymal cells. These SP cells have been proposed to be a "stem-like" population and are used here as a "model" that may reveal mechanisms which would be relevant for a better understanding of stem cell properties. Transcriptional profiles for SP and the more differentiated non-SP cells isolated from the four tissues were compared by hybridization on microarray using a common external reference.
View Article and Find Full Text PDFOur knowledge of the molecular mechanisms that regulate hematopoiesis in physiologic and pathologic conditions is limited. Using a molecular approach based on cDNA microarrays, we demonstrated the emergence of an alternative pathway for mature bone marrow cell recovery after the programmed and reversible eradication of CD41+ cells in transgenic mice expressing a conditional toxigene targeted by the platelet alphaIIb promoter. The expression profile of the newly produced CD41+ cells showed high levels of transcripts encoding Ezh2, TdT, Rag2, and various immunoglobulin (Ig) heavy chains.
View Article and Find Full Text PDFWe performed a microarray study on human differentiated HaCaT keratinocytes exposed to ionizing radiation (2 or 10 Gy). At 3 h after exposure, more than 150 known and unknown genes were found regulated in irradiated HaCaT keratinocytes. Among the genes regulated at 3 h, those involved in cell energy metabolism appeared to be the most abundant and the most responsive.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis (RA) is a heterogeneous disease that exhibits a complex genetic component. Previous RA genome scans confirmed the involvement of the HLA region and generated data on suggestive signals at non-HLA regions, albeit with few overlaps in findings between studies. The present study was undertaken to detect potential RA gene regions and to estimate the number of true RA gene regions, taking into account the heterogeneity of RA, through performance of a dense genome scan.
View Article and Find Full Text PDFObjective: Tumor necrosis factor alpha (TNFalpha) binds the receptors TNFRI and TNFRII. Results of genome scans have suggested that TNFR2 is a candidate rheumatoid arthritis (RA) locus. A case-control study in a UK Caucasian population has shown an association between a TNFR2 genotype (196R/R in exon 6) and familial, but not sporadic, RA.
View Article and Find Full Text PDF