Conf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
The introduction of the first clinical photon-counting CT (PCCT) presents an opportunity to improve and expand quantitative imaging to new applications with its high spatial resolution and stellar quantitative capabilities. Despite this potential, PCCT employs a photon-counting detector that introduces unknowns including temporal stability that is critical to separating biological changes from scanner changes and variation in longitudinal studies. For the purpose of determining the temporal stability of a first-generation dual-source PCCT, a phantom was subjected to near-weekly scans across a two-year period, in both single-source and dual-source modes.
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Despite the evident benefits of spectral computed tomography (CT) in delivering qualitative imaging superior to that of conventional CT in adults, its application in pediatric diagnostic imaging is still relatively limited due to various reasons, including design limitations and radiation dose considerations. The use of specialized K-edge filters, in conjunction with other spectral technologies, has been demonstrated to improve spectral quantification accuracy. X-ray flux limitations generally pose challenges in these concepts when applied to adults.
View Article and Find Full Text PDFObjective: Among the advancements in computed tomography (CT) technology, photon-counting computed tomography (PCCT) stands out as a significant innovation, providing superior spectral imaging capabilities while simultaneously reducing radiation exposure. Its long-term stability is important for clinical care, especially longitudinal studies, but is currently unknown. This study sets out to comprehensively analyze the long-term stability of a first-generation clinical PCCT scanner.
View Article and Find Full Text PDFObjective: Among the advancements in computed tomography (CT) technology, photon-counting computed tomography (PCCT) stands out as a significant innovation, providing superior spectral imaging capabilities while simultaneously reducing radiation exposure. Its long-term stability is important for clinical care, especially longitudinal studies, but is currently unknown. This study sets out to comprehensively analyze the long-term stability of a first-generation clinical PCCT scanner.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
In recent years, the importance of spectral CT scanners in clinical settings has significantly increased, necessitating the development of phantoms with spectral capabilities. This study introduces a dual-filament 3D printing technique for the fabrication of multi-material phantoms suitable for spectral CT, focusing particularly on creating realistic phantoms with orthopedic implants to mimic metal artifacts. Previously, we developed PixelPrint for creating patient-specific lung phantoms that accurately replicate lung properties through precise attenuation profiles and textures.
View Article and Find Full Text PDFSpectral computed tomography (CT) is a powerful diagnostic tool offering quantitative material decomposition results that enhance clinical imaging by providing physiologic and functional insights. Iodine, a widely used contrast agent, improves visualization in various clinical contexts. However, accurately detecting low-concentration iodine presents challenges in spectral CT systems, particularly crucial for conditions like pancreatic cancer assessment.
View Article and Find Full Text PDF. Evaluate the reproducibility, temperature tolerance, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations..
View Article and Find Full Text PDFObjective: Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom to evaluate a commercial DLR algorithm across a wide range of radiation dose levels.
View Article and Find Full Text PDFObjectives: Evaluate the reproducibility, temperature sensitivity, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations.
Materials And Methods: Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating and cooling (35 to 80 °C). Physical density maps were reconstructed from spectral results using a range of reconstruction parameters.