The structures of syn and anti 6-methoxyindole have been determined in the electronic ground and excited states using rotationally resolved electronic spectroscopy and high level ab initio calculations. Second order coupled cluster theory predicts the lowest excited singlet states to be heavily mixed and the transition dipole moments to depend strongly on the geometries. From the analysis of the rovibronic spectra of seven isotopomers, the absolute orientation of the transition dipole moment within the principle axis frame was determined to be L(b)-like for both conformers.
View Article and Find Full Text PDFThe electronic origin bands A and B of 5-hydroxyindole were measured using rotationally resolved electronic spectroscopy. From comparison of the experimental rotational constants to the results of ab initio calculated structures, we could make the assignment of band A being due to the syn conformer and of band B being due to the anti conformer. These conformers, which differ in the orientation of the hydroxy group with respect to the rest of the molecule, have considerably different S1 state life times.
View Article and Find Full Text PDFThe structure and electronic properties of the electronic ground state and the lowest excited singlet state (S(1)) of 5-fluoroindole (5FI) were determined by using rotationally resolved spectroscopy of the vibration-less electronic origin of 5FI. From the parameters of the axis reorientation Hamiltonian, the absolute orientation of the transition dipole moment in the molecular frame was determined and the character of the excited state was identified as L(b).
View Article and Find Full Text PDFThe structure and electronic properties of the electronic ground and the lowest excited singlet states of 5-cyanoindole (5CI) were determined using rotationally resolved spectroscopy of the vibrationless electronic origin of 5CI. In contrast to most other indole derivatives, the lowest excited state of 5CI is determined to be of L(a) character. The conventional approximate coupled cluster singles and doubles model (CC2) fails to describe the geometry of the excited state correctly.
View Article and Find Full Text PDFRotationally resolved electronic spectra of the vibrationless origin and of eight vibronic bands of 5-methoxyindole (5MOI) have been measured and analyzed using an evolutionary strategy approach. The experimental results are compared to the results of ab initio calculations. All vibronic bands can be explained by absorption of a single conformer, which unambiguously has been shown to be the anti-conformer from its rotational constants and excitation energy.
View Article and Find Full Text PDF