Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the "one-size-fits-all" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations.
View Article and Find Full Text PDFIn this study, we use modified cationic nanocarriers as vehicles for the intracellular delivery of therapeutic siRNA. After developing nanocarrier formulations with appropriate pK, size, swellability, and cytocompatibility, we investigated the importance of siRNA loading methods by studying the impact of the pH and time over which siRNA is loaded into the nanocarriers. We concentrate on diffusion-based loading in the presence and absence of electrostatic interactions.
View Article and Find Full Text PDFConventional therapeutic approaches for cancer generally involve chemo- and radiation therapies that often exhibit low efficacy and induce toxic side effects. Recent years have seen significant advancements in the use of protein biologics as a promising alternative treatment option. Nanotechnology-based systems have shown great potential in providing more specific and targeted cancer treatments, thus improving upon many of the limitations associated with current treatments.
View Article and Find Full Text PDFWhile a number of enteric coatings and pH-sensitive oral delivery vehicles have been developed, they lack the ability to sufficiently protect proteins from proteolytic degradation once released from the carrier. In this work, we show that H-bonded, pH-sensitive poly(methacrylic acid-grafted ethylene glycol) glycol (henceforth designated as P(MAA-g-EG) gels) exhibit great promise as protein carriers, as they utilize poly(ethylene glycol) (PEG) chains to promote mucoadhesion in the small intestine, increasing the chances that the drug is released within the villus of the absorptive intestinal wall. Importantly, PEG was also conjugated to the B29-lysine (LysB29) position of insulin in order to protect the drug from proteolytic degradation once released in the small intestine and adhere the drug to the intestinal epithelium through improved mucoadhesion.
View Article and Find Full Text PDFDespite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples.
View Article and Find Full Text PDFRibonucleic acid (RNA) is of great interest in many different therapeutic areas including infectious diseases such as immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thanks to current, advanced treatments for HIV, the diagnosis is no longer a death sentence. However, even with these treatments, latency is suggested to persist in T-lymphocyte-rich tissues including gut-associated lymphatic tissue (GALT), spleen, and bone marrow making HIV an incurable disease.
View Article and Find Full Text PDFHematological cancers such as leukemia, lymphoma, and multiple myeloma have traditionally been treated with chemo and radiotherapy approaches. Introduction of immunotherapies for treatment of these diseases has led to patient remissions that would not have been possible with traditional approaches. In this critical review we identify main disease characteristics, symptoms, and current treatment options.
View Article and Find Full Text PDFOphthalmic drug delivery via eye drops is inefficient because only about 1-5% of the drug permeates the cornea during the short residence time of a few minutes. Contact lenses are receiving considerable attention for delivering ophthalmic drugs because of higher bioavailability and the possibility of sustained release from hour to days, and possibly longer. The drug release durations from contact lenses are typically measured in vitro and it is challenging to relate the in vitro release to in vivo release, particularly for hydrophobic drugs which may not exhibit sink release in vitro and in vivo.
View Article and Find Full Text PDFOphthalmic diseases represent a significant problem as over 2 billion people worldwide suffer from vison impairment and blindness. Eye drops account for around 90% of ophthalmic medications but are limited in success due to poor patient compliance and low bioavailability. Low bioavailability can be attributed to short retention times in the eye caused by rapid tear turnover and the difficulty of drug diffusion through the multi-layered structure of the eye that includes lipid-rich endothelial and epithelial layers as well as the stroma which is high in water content.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2020
Gold nanoparticles (GNPs) are commonly synthesized using the Turkevich method, but there are limitations on the maximum concentration of gold nanoparticles that can be achieved using this method (often < 1 mM (=0.34 mg/mL) gold precursor loading). Here, we report an inverse Turkevich method which significantly increases the concentration of gold nanoparticles (up to 5-fold) in the aqueous phase by introducing poly (vinyl alcohol) (PVA) to the synthesis system for stabilization.
View Article and Find Full Text PDFBone loss through traumatic injury is a significant clinical issue. Researchers have created many scaffold types to mimic an extracellular matrix to provide structural support for the formation of new bone, however functional regeneration of larger scaffolds has not been fully achieved. Newer scaffolds aim to deliver bioactive molecules to improve tissue regeneration.
View Article and Find Full Text PDFObjective: The objective of this study is to design a physical model of a magnetic filtration system which can separate magnetic nanoparticle (MNP)-tagged cytokines from fluid at physiologically relevant flow rates employed during cardiopulmonary bypass (CPB) procedures.
Methods: The Navier-Stokes equations for the pressure driven flow in the chamber and the quasistatic stray magnetic field produced by an array of permanent magnets were solved using finite element analysis in COMSOL Multiphysics for 2D and 3D representations of the flow chamber. Parameters affecting the drag and magnetic forces including flow chamber dimensions, high gradient magnet array configurations, and particle properties, were changed and evaluated for their effect on MNP capture.
Introduction: Eye drops are commonly used for delivering ophthalmic drugs despite many deficiencies including low bioavailability and poor compliance. Contact lenses can deliver drugs with high bioavailability but commercial contacts release drug rapidly, limiting benefits and necessitating modifications to improve the drug release characteristics.
Areas Covered: This review covers the common approaches to prolong the release rates of drugs from contact lenses including molecular imprinting, incorporation of nano/microparticles, vitamin-E barriers, and layered/implant contact lenses.
Int J Hyperthermia
January 2020
Magnetic nanoparticles (MNPs) generate heat when exposed to an alternating magnetic field. Consequently, MNPs are used for magnetic fluid hyperthermia (MFH) for cancer treatment, and have been shown to increase the efficacy of chemotherapy and/or radiation treatment in clinical trials. A downfall of current MFH treatment is the inability to deliver sufficient heat to the tumor due to: insufficient amounts of MNPs, unequal distribution of MNPs throughout the tumor, or heat loss to the surrounding environment.
View Article and Find Full Text PDFInhibition of interleukin-6 (IL-6) holds significant promise as a therapeutic approach for triple negative breast cancer (TNBC). We previously reported that phenylmethimazole (C10) reduces IL-6 expression in several cancer cell lines. We have identified a more potent derivative of C10 termed COB-141.
View Article and Find Full Text PDFThe expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor-α (TNF-α)].
View Article and Find Full Text PDF