Publications by authors named "Olivia L Champion"

The development of anti-virulence drug therapy against infections would provide an alternative to traditional antibacterial therapy that are increasingly failing. Here, we demonstrate that the OmpR transcriptional regulator plays a pivotal role in the pathogenesis of diverse clinical strains in multiple murine and invertebrate infection models. We identified OmpR-regulated genes using RNA sequencing and further validated two genes whose expression can be used as robust biomarker to quantify OmpR inhibition in .

View Article and Find Full Text PDF

The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that 11168H forms persister cells at a frequency of 10 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence.

View Article and Find Full Text PDF

In the past decade, (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens.

View Article and Find Full Text PDF

The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values.

View Article and Find Full Text PDF

Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends.

View Article and Find Full Text PDF

The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection.

View Article and Find Full Text PDF

Mammals are widely used by microbiologists as a model host species to study infectious diseases of humans and domesticated livestock. These studies have been pivotal for our understanding of mechanisms of virulence and have allowed the development of diagnostics, pre-treatments and therapies for disease. However, over the past decade we have seen efforts to identify organisms which can be used as alternatives to mammals for these studies.

View Article and Find Full Text PDF

There is an urgent need for an effective vaccine against human disease caused by Burkholderia pseudomallei, and although a wide range of candidates have been tested in mice none provide high level protection. We considered this might reflect the inability of these vaccine candidates to protect against chronic disease. Using Q-RT PCR we have identified 6 genes which are expressed in bacteria colonising spleens and lungs of chronically infected mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed Burkholderia pseudomallei, which causes melioidosis, to uncover genes critical for its survival in a mouse model using TraDIS, a method that helps identify important genetic information.
  • All previously identified genes were confirmed, and an additional 105 mutants were discovered, highlighting their varied roles in the bacteria's pathogenesis.
  • Notably, the deletion of the tex gene showed potential for creating a live vaccine, as it provided protective immunity against the wild-type bacteria.
View Article and Find Full Text PDF

The enteropathogen Campylobacter jejuni is a global health disaster, being one of the leading causes of bacterial gastroenteritis. Here, we present the draft genome sequence of C. jejuni strain cj255, isolated from a chicken source in Islamabad, Pakistan.

View Article and Find Full Text PDF
Article Synopsis
  • Campylobacter jejuni and C. coli are leading causes of foodborne gastroenteritis in the UK, and this study investigates their metabolic diversity using clinical strains from the UK, Pakistan, and Thailand.
  • A core set of carbon sources was identified for all tested strains, but propionic acid was uniquely utilized by C. coli, indicating significant metabolic differences between the two species.
  • The findings suggest that specific phenotypic and genotypic methods based on propionic acid utilization could help differentiate between C. jejuni and C. coli.
View Article and Find Full Text PDF

A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS.

View Article and Find Full Text PDF

Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically.

View Article and Find Full Text PDF

We solved the crystal structure of Burkholderia pseudomallei acute phase antigen BPSL2765 in the context of a structural vaccinology study, in the area of melioidosis vaccine development. Based on the structure, we applied a recently developed method for epitope design that combines computational epitope predictions with in vitro mapping experiments and successfully identified a consensus sequence within the antigen that, when engineered as a synthetic peptide, was selectively immunorecognized to the same extent as the recombinant protein in sera from melioidosis-affected subjects. Antibodies raised against the consensus peptide were successfully tested in opsonization bacterial killing experiments and antibody-dependent agglutination tests of B.

View Article and Find Full Text PDF

Background: In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y.

View Article and Find Full Text PDF

Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut.

View Article and Find Full Text PDF

Manganese has an important yet undefined role in the virulence of many bacterial pathogens. In this study we confirm that a null mutation in Yersinia pseudotuberculosis mntH reduces intracellular manganese accumulation. An mntH mutant was susceptible to killing by reactive oxygen species when grown under manganese-limited conditions.

View Article and Find Full Text PDF

Galleria mellonella (wax moth) larvae have elsewhere been shown to be susceptible to pathogens such as Francisella tularensis, Burkholderia mallei, and Pseudomonas aeruginosa. We report that the larvae are rapidly killed by Campylobacter jejuni at 37C. Three strains of C.

View Article and Find Full Text PDF

We report that larvae of the wax moth (Galleria mellonella) are susceptible to infection with the human enteropathogen Yersinia pseudotuberculosis at 37 degrees C. Confocal microscopy demonstrated that in the initial stages of infection the bacteria were taken up into haemocytes. To evaluate the utility of this model for screening Y.

View Article and Find Full Text PDF

We tested the hypothesis that host resistance to Campylobacter jejuni is Nramp1 dependent. Following intraperitoneal (IP) inoculation of Nramp1+/+ and isogenic Nramp1-deficient (Nramp1-/-) mice C. jejuni primarily associated with mac1-positive cells in liver tissue.

View Article and Find Full Text PDF

While the normal microbiota has been implicated as a critical defense against invading pathogens, the impact of enteropathogenic infection and host inflammation on intestinal microbial communities has not been elucidated. Using mouse models of Citrobacter rodentium, which closely mimics human diarrheal pathogens inducing host intestinal inflammation, and Campylobacter jejuni infection, as well as chemically and genetically induced models of intestinal inflammation, we demonstrate that host-mediated inflammation in response to an infecting agent, a chemical trigger, or genetic predisposition markedly alters the colonic microbial community. While eliminating a subset of indigenous microbiota, host-mediated inflammation supported the growth of either the resident or introduced aerobic bacteria, particularly of the Enterobacteriaceae family.

View Article and Find Full Text PDF

While the normal microbiota has been implicated as a critical defense against invading pathogens, the impact of enteropathogenic infection and host inflammation on intestinal microbial communities has not been elucidated. Using mouse models of Citrobacter rodentium, which closely mimics human diarrheal pathogens inducing host intestinal inflammation, and Campylobacter jejuni infection, as well as chemically and genetically induced models of intestinal inflammation, we demonstrate that host-mediated inflammation in response to an infecting agent, a chemical trigger, or genetic predisposition markedly alters the colonic microbial community. While eliminating a subset of indigenous microbiota, host-mediated inflammation supported the growth of either the resident or introduced aerobic bacteria, particularly of the Enterobacteriaceae family.

View Article and Find Full Text PDF

Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping (whole-genome comparisons of microbes using DNA microarrays) combined with Bayesian-based algorithms to model the phylogeny of this major food-borne pathogen. In this study 111 C.

View Article and Find Full Text PDF

We recently demonstrated that Campylobacter jejuni produces a capsular polysaccharide (CPS) that is the major antigenic component of the classical Penner serotyping system distinguishing Campylobacter into >60 groups. Although the wide variety of C. jejuni serotypes are suggestive of structural differences in CPS, the genetic mechanisms of such differences are unknown.

View Article and Find Full Text PDF