The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes.
View Article and Find Full Text PDFMethionine abundance affects diverse cellular functions, including cell division, redox homeostasis, survival under starvation, and oxidative stress response. Regulation of the methionine biosynthetic pathway involves three DNA-binding proteins-Met31p, Met32p, and Cbf1p. We hypothesized that there exists a "division of labor" among these proteins that facilitates coordination of methionine biosynthesis with diverse biological processes.
View Article and Find Full Text PDFSynthetic biologists have adopted the engineering principle of standardization of parts and assembly in the construction of a variety of genetic circuits that program living cells to perform useful tasks. In this chapter, we describe the BioBrick standard as a widely used method. We present methods by which new BioBrick parts can be designed and produced, starting with existing clones, naturally occurring DNA, or de novo.
View Article and Find Full Text PDFA yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency.
View Article and Find Full Text PDF