To gain insight into wasp factors that might be involved in the initial induction of galls on woody plants, we performed high throughput (454) transcriptome analysis of ovaries and venom glands of two cynipid gall wasps, and , inducing galls on oak and rose, respectively. assembled and annotated contigs were compared to sequences from phylogenetically related parasitoid wasps. The relative expression levels of contigs were estimated to identify the most expressed gene sequences in each tissue.
View Article and Find Full Text PDFIn Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production.
View Article and Find Full Text PDFIn plant cytokinin (CK) signaling, type-B response regulators (RRs) act as major players in orchestrating the transcriptome changes in response to CK. However, their direct targets are poorly known. The identification of putative type-ARR1 motifs located within the promoter of the CK-responsive hydroxyl methyl butenyl diphosphate synthase (HDS) gene from the methyl erythritol phosphate (MEP) pathway prompted us to investigate the ability of a previously isolated periwinkle type-B RR (CrRR5) that presents high homologies with ARR1 to interact with the promoter.
View Article and Find Full Text PDFThe Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C.
View Article and Find Full Text PDFIn plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFCatharanthus roseus synthesizes a wide range of valuable monoterpene indole alkaloids, some of which have recently been recognized as functioning in plant defence mechanisms. More specifically, in aerial organ epidermal cells, vacuole-accumulated strictosidine displays a dual fate, being either the precursor of all monoterpene indole alkaloids after export from the vacuole, or the substrate for a defence mechanism based on the massive protein cross-linking, which occurs subsequent to organelle membrane disruption during biotic attacks. Such a mechanism relies on a physical separation between the vacuolar strictosidine-synthesizing enzyme and the nucleus-targeted enzyme catalyzing its activation through deglucosylation.
View Article and Find Full Text PDF