Publications by authors named "Olivia F Cox"

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Post-translational modification by small ubiquitin-like modifier (SUMO) has emerged as a global mechanism for the control and integration of a wide variety of biological processes through the regulation of protein activity, stability and intracellular localization. As SUMOylation is examined in greater detail, it has become clear that the process is at the root of several pathologies including heart, endocrine, and inflammatory disease, and various types of cancer. Moreover, it is certain that perturbation of this process, either globally or of a specific protein, accounts for many instances of congenital birth defects.

View Article and Find Full Text PDF

The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos.

View Article and Find Full Text PDF

A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100-min CZE-ESI-MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3-h UPLC-ESI-MS/MS separations (45 h total instrument time). CZE-MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC-MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.

View Article and Find Full Text PDF

A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.

View Article and Find Full Text PDF