Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA-protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment.
View Article and Find Full Text PDFThe nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing is unclear.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo.
View Article and Find Full Text PDFThe nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown.
View Article and Find Full Text PDF