Study Design: Controlled laboratory study.
Objective: To investigate the impact of exposure to physiologically relevant caffeine concentrations on intervertebral disc (IVD) cell viability and extracellular matrix composition (ECM) in a whole organ culture model as potential contributing mechanisms in development and progression of IVD disorders in humans. Primary outcome measures were IVD viable cell density (VCD) and ECM composition.
Despite respiratory motor neuron death, ventilation is preserved in SOD1 rats. Compensatory respiratory plasticity may counterbalance the loss of these neurons. Phrenic long-term facilitation (pLTF; a form of respiratory plasticity) in naïve rats is 5-HT2 and NADPH oxidase-dependent.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal disease characterized by degeneration of motor neurons and muscles, and death is usually a result of impaired respiratory function due to loss of motor neurons that control upper airway muscles and/or the diaphragm. Currently, no cure for ALS exists and treatments to date do not significantly improve respiratory or swallowing function. One cause of ALS is a mutation in the superoxide dismutase-1 () gene; thus, reducing expression of the mutated gene may slow the progression of the disease.
View Article and Find Full Text PDFLoss of ovarian hormones leads to increased adiposity and insulin resistance (IR), increasing the risk for cardiovascular and metabolic diseases. The purpose of this study was to investigate whether the molecular mechanism behind the adverse systemic and adipose tissue-specific metabolic effects of ovariectomy requires loss of signaling through estrogen receptor alpha (ERα) or estrogen receptor β (ERβ). We examined ovariectomized (OVX) and ovary-intactwild-type (WT), ERα-null (αKO), and ERβ-null (βKO) female mice (age ~49 weeks; n = 7-12/group).
View Article and Find Full Text PDF