Publications by authors named "Olivia Botonis"

The COVID-19 pandemic has challenged the current paradigm of clinical and community-based disease detection. We present a multimodal wearable sensor system paired with a two-minute, movement-based activity sequence that successfully captures a snapshot of physiological data (including cardiac, respiratory, temperature, and percent oxygen saturation). We conducted a large, multi-site trial of this technology across India from June 2021 to April 2022 amidst the COVID-19 pandemic (Clinical trial registry name: International Validation of Wearable Sensor to Monitor COVID-19 Like Signs and Symptoms; NCT05334680; initial release: 04/15/2022).

View Article and Find Full Text PDF

Background: Falls are a common complication experienced after a stroke and can cause serious detriments to physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wearable airbag technology has been designed to detect and mitigate fall impact. However, these devices have not been designed nor validated for the stroke population and thus, may inadequately detect falls in individuals with stroke-related motor impairments.

View Article and Find Full Text PDF

Introduction: Difficulty swallowing (dysphagia) occurs frequently in patients with neurological disorders and can lead to aspiration, choking, and malnutrition. Dysphagia is typically diagnosed using costly, invasive imaging procedures or subjective, qualitative bedside examinations. Wearable sensors are a promising alternative to noninvasively and objectively measure physiological signals relevant to swallowing.

View Article and Find Full Text PDF

Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.

View Article and Find Full Text PDF