Natural tolerance in hexaploid bread wheat (Triticum aestivum L.) to synthetic auxin herbicides is primarily due to rapid metabolic detoxification, but genes encoding these herbicide-detoxifying enzymes have yet to be identified. Herbicide safeners are commonly applied in wheat to achieve herbicide tolerance by inducing the expression and activity of herbicide-detoxifying enzymes.
View Article and Find Full Text PDFTo date, the only known mechanism conferring protoporphyrinogen IX oxidase (PPO)-inhibitor resistance in waterhemp (Amaranthus tuberculatus) is a glycine deletion in PPO2 (ΔG210), which results in cross-resistance to foliar PPO-inhibiting herbicides. However, a metabolism-based, HPPD-inhibitor resistant waterhemp population from Illinois (named SIR) was suspected of having a non-target site resistance (NTSR) mechanism due to its resistance to carfentrazone-ethyl (CE) but sensitivity to diphenylethers (DPEs). In greenhouse experiments, SIR sustained less injury than two PPO inhibitor-sensitive populations (WCS and SEN) after applying a field-use rate of CE, and after initial rapid necrosis, regrowth of SIR plants was comparable to a known PPO inhibitor-resistant population (ACR) possessing the ΔG210 mutation.
View Article and Find Full Text PDF